440 research outputs found

    Elevated levels of plasma homocysteine in postmenopausal women

    Get PDF
    Abstract Background: Low levels of plasma homocysteine have been found in children and adult populations living in Burkina Faso in association with a low prevalence of coronary heart disease. Methods: Based on this finding, the levels of plasma homocysteine and other thiols (cysteine, cysteinylglycine, glutathione) in postmenopausal women living in Burkina Faso were evaluated with the aim of investigating whether age and life conditions influence plasma homocysteine and other thiol levels. Results: It was found that in older postmenopausal women the mean level o

    Identification of two novel LDLR variants by Next Generation Sequencing

    Get PDF
    Introduction. Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). Targeted Next Generation Sequencing (NGS) is a new opportunity to expand the existing pathogenic variants (PVs) spectrum associated to FH. Our aim was to report a diagnostic NGS-based approach to detect variants associated to FH.Methods. We report two patients: a 48-year-old Asian woman, without known history of hypercholesterolemia and a 46-year-old Caucasian man, with childhood hypercholesterolemia.Results. An effective NGS-based pipeline, FH-Devyser kit/Amplicon Suite, beginning from sequencing to data analysis, did not identify known PVs in the LDLR, APOB, APOE, LDLRAP1, STAP1 and PCSK9 genes, but revealed two novel LDLR variants (c.1564A>T, p.Ile522Phe and c.1688C>T, p.Pro563Leu).Discussion and conclusions. This study showed that an effective NGS-based pipeline led to a definitive diagnosis in two FH families, allowing to plan their therapeutic treatment. Although the functional consequence of the two LDLR variants needs to be assessed in vitro, the in silico analysis and high preservation of the two amino acid positions observed in the LDLR protein, across different animal species, suggest that both variants are deleterious

    A combination of infrared spectroscopy and morphological analysis allows successfully identifying rare crystals and atypical urinary stones

    Get PDF
    Background: The combination of infrared spectroscopy and morphological analysis significantly improves the urinary stone analysis.In addition to common urinary stones, it is not unusual to encounter spurious or factitious stones that, if not appropriately identified, can lead to errors in the diagnosis. In this study we shows the importance of Infrared spectroscopy and the morphological analysis, for determining the presence of drugs crystals or atypical components in the calculi.Methods: among 1.041 urinary stones analyzed by morphocostitutional analysis the rare stones were also analyzed by chemical spot test analysis.Results: Among 1.041 calculi analyzed, 1.018 had a known composition, 23 samples were stones with rare composition or fake urinary stones.Conclusions: FT-IR, allows to identify, theoretically, any substance, including drug-containing calculi or calculi with unusual composition and identify false stones. This is mandatory to treat patients affected by urolithiasis with a personalized clinical approach

    New onset of Susac syndrome after mRNA COVID-19 vaccine: a case report

    Get PDF
    Susac syndrome (SuS) is a rare immune-mediated disorder, affecting microvessels in the brain, retina and inner ear, leading to central nervous system dysfunction, visual disturbances and sensorineural hearing loss. These events may occur simultaneously or in succession. Since its first description in 1979 by John Susac, about 400 cases have been described; however, SuS is probably underdiagnosed. SuS usually affects young adults between 20 and 40 years (female-to-male ratio of 3.5/1) [1, 2]. Occlusive microvascular endotheliopathy/basement membranopathy represents a disease hallmark, but the pathogenesis is still debated. Infections, diet or medications have been described as possible triggers of autoimmunity [1]. In 2006, a case of SuS after smallpox vaccination was reported. The COVID-19 pandemic has affected over 260 million people and different neurological disorders have been related to both Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and vaccination [3]. Six cases of SuS related to SARS-CoV-2 infection or vaccination have been described: two following SARS-CoV2 infection, one related to ChAdOx1 vaccine, and three after Coronavac vaccine [4]. Here we report the first case of SuS after BNT162b2 mRNA COVID-19 vaccine (Comirnaty®)

    Basic and Preclinical Research for Personalized Medicine

    Get PDF
    Basic and preclinical research founded the progress of personalized medicine by providing a prodigious amount of integrated profiling data and by enabling the development of biomedical applications to be implemented in patient-centered care and cures. If the rapid development of genomics research boosted the birth of personalized medicine, further development in omics technologies has more recently improved our understanding of the functional genome and its relevance in profiling patients\u2019 phenotypes and disorders. Concurrently, the rapid biotechnological advancement in diverse research areas enabled uncovering disease mechanisms and prompted the design of innovative biological treatments tailored to individual patient genotypes and phenotypes. Research in stem cells enabled clarifying their role in tissue degeneration and disease pathogenesis while providing novel tools toward the development of personalized regenerative medicine strategies. Meanwhile, the evolving field of integrated omics technologies ensured translating structural genomics information into actionable knowledge to trace detailed patients\u2019 molecular signatures. Finally, neuroscience research provided invaluable models to identify preclinical stages of brain diseases. This review aims at discussing relevant milestones in the scientific progress of basic and preclinical research areas that have considerably contributed to the personalized medicine revolution by bridging the bench-to-bed gap, focusing on stem cells, omics technologies, and neuroscience fields as paradigms

    A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form

    Get PDF
    Background: More than 90% of Congenital Adrenal Hyperplasia (CAH) cases are associated with mutations in the 21-hydroxylase gene (CYP21A2) in the HLA class III area on the short arm of chromosome 6p21.3. In this region, a 30 kb deletion produces a non functional chimeric gene with its 5′ and 3′ ends corresponding to CYP21A1P pseudogene and CYP21A2, respectively. To date, five different CYP21A1P/CYP21A2 chimeric genes have been found and characterized in recent studies. In this paper, we describe a new CYP21A1P/CYP21A2 chimera (CH-6) found in an Italian CAH patient. Methods Southern blot analysis and CYP21A2 sequencing were performed on the patient. In addition, in order to isolate the new CH-6 chimeric gene, two different strategies were used. Results: The CYP21A2 sequencing analysis showed that the patient was homozygote for the g.655C/A<G mutation and heterozygote for the p.P30L missense mutation. In addition, the promoter sequence revealed the presence, in heterozygosis, of 13 SNPs generally produced by microconversion events between gene and pseudogene. Southern blot analysis showed that the woman was heterozygote for the classic 30-kb deletion producing a new CYP21A1P/CYP21A2 chimeric gene (CH-6). The hybrid junction site was located between the end of intron 2 pseudogene, after the g.656C/A<G mutation, and the beginning of exon 3, before the 8 bp deletion. Consequently, CH-6 carries three mutations: the weak pseudogene promoter region, the p.P30L and the g.655C/A<G splice mutation. Conclusion: We describe a new CYP21A1P/CYP21A2 chimera (CH-6), associated with the HLA-B15, DR13 haplotype, in a young Italian CAH patient. © 2009 Concolino et al; licensee BioMed Central Ltd

    BRCA Mutation Status in Triple-Negative Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: A Pivotal Role for Treatment Decision-Making

    Get PDF
    Simple Summary In this retrospective observational study, we evaluated data from patients with triple-negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NACT) in order to better define the impact of germline BRCA1/2 (gBRCA1/2) mutation status on outcomes in this patient population. Our results show that patients with BRCA1/2 mutation had a higher pathologic complete response (pCR) rate than non-mutated patients; nevertheless, the benefit was confirmed only in the subset of patients who received a platinum-based NACT. Furthermore, pCR was associated with improved Event Free Survival (EFS) and Overall Survival (OS), regardless of BRCA1/2 mutation status and type of NACT received. Long-term follow-up analyses are needed to further define the impact of gBRCA mutation status in patients with early-TNBC. Triple-negative breast cancer (TNBC) is characterized by earlier recurrence and shorter survival compared with other types of breast cancer. Moreover, approximately 15 to 25% of all TNBC patients harbor germline BRCA (gBRCA) 1/2 mutations, which confer a more aggressive phenotype. However, TNBC seems to be particularly sensitive to chemotherapy, the so-called 'triple negative paradox'. Therefore, Neoadjuvant chemotherapy (NACT) is currently considered the preferred approach for early-stage TNBC. BRCA status has also been studied as a predictive biomarker of response to platinum compounds. Although several randomized trials investigated the addition of carboplatin to standard NACT in early-stage TNBC, the role of BRCA status remains unclear. In this retrospective analysis, we evaluated data from 136 consecutive patients with Stage I-III TNBC who received standard NACT with or without the addition of carboplatin, in order to define clinical features and outcomes in BRCA 1/2 mutation carriers and non-carrier controls. Between January 2013 and February 2021, 67 (51.3%) out of 136 patients received a standard anthracyclines/taxane regimen and 69 (50.7%) patients received a platinum-containing chemotherapy regimen. Deleterious germline BRCA1 or BRCA2 mutations were identified in 39 (28.7%) patients. Overall, patients with deleterious gBRCA1/2 mutation have significantly higher pCR rate than non-carrier patients (23 [59%] of 39 vs. 33 [34%] of 97; p = 0.008). The benefit of harboring a gBRCA mutation was confirmed only in the subset of patients who received a platinum-based NACT (17 [65.4%] of 26 vs. 13 [30.2%] of 43; p = 0.005) while no differences were found in the platinum-free subgroup. Patients who achieved pCR after NACT had significantly better EFS (OR 4.5; 95% CI 1.9-10.7; p = 0.001) and OS (OR 3.3; 95% CI 1.3-8.9; p = 0.01) than patients who did not, regardless of BRCA1/2 mutation status and type of NACT received. Our results based on real-world evidence show that TNBC patients with the gBRCA1/2 mutation who received platinum-based NACT have a higher pCR rate than non-carrier patients, supporting the use of this chemotherapy regimen in this patient population. Long-term follow-up analyses are needed to further define the role of gBRCA mutation status on clinical outcomes in patients with early-TNBC

    Assessing the pathogenicity of BRCA1/2 variants of unknown significance: Relevance and challenges for breast cancer precision medicine

    Get PDF
    IntroductionBreast cancer (BC) is the leading cause of cancer-related death in women worldwide. Pathogenic variants in BRCA1 and BRCA2 genes account for approximately 50% of all hereditary BC, with 60-80% of patients characterized by Triple Negative Breast Cancer (TNBC) at an early stage phenotype. The identification of a pathogenic BRCA1/2 variant has important and expanding roles in risk-reducing surgeries, treatment planning, and familial surveillance. Otherwise, finding unclassified Variants of Unknown Significance (VUS) limits the clinical utility of the molecular test, leading to an “imprecise medicine”.MethodsWe reported the explanatory example of the BRCA1 c.5057A&gt;C, p.(His1686Pro) VUS identified in a patient with TNBC. We integrated data from family history and clinic-pathological evaluations, genetic analyses, and bioinformatics in silico investigations to evaluate the VUS classification.ResultsOur evaluation posed evidences for the pathogenicity significance of the investigated VUS: 1) association of the BRCA1 variant to cancer-affected members of the family; 2) absence of another high-risk mutation; 3) multiple indirect evidences derived from gene and protein structural analysis.DiscussionIn line with the ongoing efforts to uncertain variants classification, we speculated about the relevance of an in-depth assessment of pathogenicity of BRCA1/2 VUS for a personalized management of patients with BC. We underlined that the efficient integration of clinical data with the widest number of supporting molecular evidences should be adopted for the proper management of patients, with the final aim of effectively guide the best prognostic and therapeutic paths

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    Measurement of the very rare K+π+ννˉK^+ \to \pi^+ \nu \bar\nu decay

    Get PDF
    The decay K+→π+νν¯ , with a very precisely predicted branching ratio of less than 10−10 , is among the best processes to reveal indirect effects of new physics. The NA62 experiment at CERN SPS is designed to study the K+→π+νν¯ decay and to measure its branching ratio using a decay-in-flight technique. NA62 took data in 2016, 2017 and 2018, reaching the sensitivity of the Standard Model for the K+→π+νν¯ decay by the analysis of the 2016 and 2017 data, and providing the most precise measurement of the branching ratio to date by the analysis of the 2018 data. This measurement is also used to set limits on BR(K+→π+X ), where X is a scalar or pseudo-scalar particle. The final result of the BR(K+→π+νν¯ ) measurement and its interpretation in terms of the K+→π+X decay from the analysis of the full 2016-2018 data set is presented, and future plans and prospects are reviewed
    corecore