1,347 research outputs found

    An exact nilpotent non-perturbative BRST symmetry for the Gribov-Zwanziger action in the linear covariant gauge

    Get PDF
    We point out the existence of a non-perturbative exact nilpotent BRST symmetry for the Gribov-Zwanziger action in the Landau gauge. We then put forward a manifestly BRST invariant resolution of the Gribov gauge fixing ambiguity in the linear covariant gauge.Comment: 8 pages. v2: version accepted for publication in PhysRev

    More on the non-perturbative Gribov-Zwanziger quantization of linear covariant gauges

    Get PDF
    In this paper, we discuss the gluon propagator in the linear covariant gauges in D=2,3,4D=2,3,4 Euclidean dimensions. Non-perturbative effects are taken into account via the so-called Refined Gribov-Zwanziger framework. We point out that, as in the Landau and maximal Abelian gauges, for D=3,4D=3,4, the gluon propagator displays a massive (decoupling) behaviour, while for D=2D=2, a scaling one emerges. All results are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently introduced non-perturbative BRST transformation. We also propose a minimizing functional that could be used to construct a lattice version of our non-perturbative definition of the linear covariant gauge.Comment: 15 pages, 1 figure; V2 typos fixed and inclusion of section on the ghost propagator. To appear in PhysRev

    Effect of FK 506 on spontaneous diabetes in BB rats

    Get PDF
    From days 30-120 after birth, 59 BB rats were treated with water (n = 20) or FK 506 in intragastric doses of 1 mg·kg-1·day-1 (n = 19) or 2 mg·kg-1·day-1 (n = 20). Diabetes developed in 75, 15, and 0% of the 3 groups, respectively. Animals protected from diabetes by FK 506 had normal intraperitoneal glucose tolerance tests, virtual absence histopathologically of autoimmune insulitis, and normal pancreatic insulin content. Forty-five to 75 days after stopping FK 506, ∼75% of the rats that were diabetes free at 120 days remained so

    FK 506 prevents spontaneous diabetes in the BB rat.

    Get PDF
    The BB rat is the experimental analogue of human juvenile diabetes mellitus. From 30 through 120 days after birth, 59 BB rats were treated with water (n = 20), or FK 506 in daily intragastric doses of 1 mg/kg (n = 19) or 2 mg/kg (n = 20). Diabetes developed in 75%, 15%, and 0% of the three groups. Animals protected from diabetes by FK 506, and killed in the nondiabetic state at 120 days had normal intraperitoneal glucose tolerance tests, virtual absence histopathologically of autoimmune insulitis, normal pancreatic insulin content, and immunocytochemical confirmation of islet insulin and glucagon content. Forty five to 75 days after stopping FK 506, about 3/4 of the animals who were diabetes free at 120 days have remained so. These results provide support for a clinical trial of FK 506 for recent onset diabetes

    A characterization of those automata that structurally generate finite groups

    Get PDF
    Antonenko and Russyev independently have shown that any Mealy automaton with no cycles with exit--that is, where every cycle in the underlying directed graph is a sink component--generates a fi- nite (semi)group, regardless of the choice of the production functions. Antonenko has proved that this constitutes a characterization in the non-invertible case and asked for the invertible case, which is proved in this paper

    Strangeness in Astrophysics and Cosmology

    Full text link
    Some recent developments concerning the role of strange quark matter for astrophysical systems and the QCD phase transition in the early universe are addressed. Causality constraints of the soft nuclear equation of state as extracted from subthreshold kaon production in heavy-ion collisions are used to derive an upper mass limit for compact stars. The interplay between the viscosity of strange quark matter and the gravitational wave emission from rotation-powered pulsars are outlined. The flux of strange quark matter nuggets in cosmic rays is put in perspective with a detailed numerical investigation of the merger of two strange stars. Finally, we discuss a novel scenario for the QCD phase transition in the early universe, which allows for a small inflationary period due to a pronounced first order phase transition at large baryochemical potential.Comment: 8 pages, invited talk given at the International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Brasil, September 28 - October 2, 200

    Phase conversion in a weakly first-order quark-hadron transition

    Full text link
    We investigate the process of phase conversion in a thermally-driven {\it weakly} first-order quark-hadron transition. This scenario is physically appealing even if the nature of this transition in equilibrium proves to be a smooth crossover for vanishing baryonic chemical potential. We construct an effective potential by combining the equation of state obtained within Lattice QCD for the partonic sector with that of a gas of resonances in the hadronic phase, and present numerical results on bubble profiles, nucleation rates and time evolution, including the effects from reheating on the dynamics for different expansion scenarios. Our findings confirm the standard picture of a cosmological first-order transition, in which the process of phase conversion is entirely dominated by nucleation, also in the case of a weakly first-order transition. On the other hand, we show that, even for expansion rates much lower than those expected in high-energy heavy ion collisions, nucleation is very unlikely, indicating that the main mechanism of phase conversion is spinodal decomposition. Our results are compared to those obtained for a strongly first-order transition, as the one provided by the MIT bag model.Comment: 12 pages, 10 figures; v2: 1 reference added, minor modifications, matches published versio

    Vacuum Energy and Renormalization on the Edge

    Full text link
    The vacuum dependence on boundary conditions in quantum field theories is analysed from a very general viewpoint. From this perspective the renormalization prescriptions not only imply the renormalization of the couplings of the theory in the bulk but also the appearance of a flow in the space of boundary conditions. For regular boundaries this flow has a large variety of fixed points and no cyclic orbit. The family of fixed points includes Neumann and Dirichlet boundary conditions. In one-dimensional field theories pseudoperiodic and quasiperiodic boundary conditions are also RG fixed points. Under these conditions massless bosonic free field theories are conformally invariant. Among all fixed points only Neumann boundary conditions are infrared stable fixed points. All other conformal invariant boundary conditions become unstable under some relevant perturbations. In finite volumes we analyse the dependence of the vacuum energy along the trajectories of the renormalization group flow providing an interesting framework for dark energy evolution. On the contrary, the renormalization group flow on the boundary does not affect the leading behaviour of the entanglement entropy of the vacuum in one-dimensional conformally invariant bosonic theories.Comment: 10 pages, 1 eps figur
    corecore