40 research outputs found

    Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

    Get PDF
    Citation: Schwartz, A. R., Potnist, N., Milsina, S., Wilson, M., Patane, J., Martins, J., . . . Staskawicz, B. J. (2015). Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology, 6, 17. https://doi.org/10.3389/fmicb.2015.00535Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type Ill effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Kg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type Ill effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors.Additional Authors: Goss, E.;Bart, R. S.;Setubal, J. C.;Jones, J. B.;Staskawicz, B. J

    Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial spot of tomato and pepper is caused by four <it>Xanthomonas </it>species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, <it>Xanthomonas euvesicatoria </it>(<it>Xcv</it>) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.</p> <p>Results</p> <p>We sequenced the genomes of <it>X. vesicatoria </it>(<it>Xv</it>) strain 1111 (ATCC 35937), <it>X. perforans </it>(<it>Xp</it>) strain 91-118 and <it>X. gardneri </it>(<it>Xg</it>) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced <it>Xcv </it>strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from <it>Xg </it>strain 101 and <it>Xv </it>strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in <it>Xcv</it>. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.</p> <p>Conclusions</p> <p>Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.</p

    Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae

    Get PDF
    Strains of Pseudomonas syringae pv. syringae resistant to copper, streptomycin, or both compounds were recovered from symptomless and diseased tissue of four woody hosts in three nurseries in Oklahoma. In strains resistant to copper and streptomycin (Cu^r Sm^r), resistance to both compounds was cotransferred with a single plasmid which was either 68, 190, or 220 kilobase pairs (kb). All Cu^s Sm^r strains contained a 68-kb conjugative plasmid. Cu^r Sm^s, strains contained one plasmid which varied in size from 60 to 73 kb. All conjugative plasmids which transferred streptomycin resistance contained sequences homologous to the strA and strB Sm^r genes from the broad-host-range plasmid RSF1010. The Sm^r determinant was subsequently cloned from a 68-kb Cu^r Sm^r plasmid designated pPSR1. A restriction map detailing the organization of the homologous Sm^r genes from pPSR1 and RSF1010 and cloned Sm^r genes from P. syringae pv. papulans and Xanthomonas campestris pv. vesicatoria revealed the conservation of all sites studied. The Cu^r genes cloned from P. syringae pv. tomato PT23 and X. campestris pv. vesicatoria XV10 did not hybridize to the Cu^r plasmids identified in the present study, indicating that copper resistance in these P. syringae pv. syringae strains may be conferred by a distinct genetic determinant.Peer reviewedPlant Patholog
    corecore