268 research outputs found

    Radially Self-Accelerating Beams

    Full text link
    We report on optical non-paraxial beams that exhibit a self-accelerating behavior in radial direction. Our theory shows that those beams are solutions to the full scalar Helmholtz equation and that they continuously evolve on spiraling trajectories. We provide a detailed insight into the theoretical origin of the beams and verify our findings on an experimental basis

    Substrate-induced bianisotropy in metamaterials

    Full text link
    We demonstrate that the presence of a supporting substrate can break the symmetry of a metamaterial structure, changing the symmetry of its effective parameters, and giving rise to bianisotropy. This indicates that magneto-electric coupling will occur in all metamaterials fabricated on a substrate, including those with symmetric designs

    Tunable fishnet metamaterials infiltrated by liquid crystals

    Full text link
    We analyze numerically the optical response and effective macroscopic parameters of fishnet metamaterials infiltrated with a nematic liquid crystal. We show that even a small amount of liquid crystal can provide tuning of the structures due to reorientation of the liquid crystal director. This enables switchable optical metamaterials, where the refractive index can be switched from positive to negative by an external field. This tuning is primarily determined by the shift of the cut-off wavelength of the holes, with only a small influence due to the change in plasmon dispersio

    Generation and near-field imaging of Airy surface plasmons

    Full text link
    We demonstrate experimentally the generation and near-field imaging of nondiffracting surface waves - plasmonic Airy beams, propagating on the surface of a gold metal film. The Airy plasmons are excited by an engineered nanoscale phase grating, and demonstrate significant beam bending over their propagation. We show that the observed Airy plasmons exhibit self-healing properties, suggesting novel applications in plasmonic circuitry and surface optical manipulation.Comment: 4 pages, 4 figure

    Electro-optical switching by liquid-crystal controlled metasurfaces

    Full text link
    We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-crystal reorientation.Comment: 6 pages, 3 figure

    Manipulation of Airy surface plasmon beams

    No full text
    We demonstrate experimentally the manipulation of Airy surface plasmon beams in a linear potential. For this purpose, we fabricate dielectric-loaded plasmonic structures with a graded refractive index by negative-tone gray-scale electron beam lithography. Using such carefully engineered potentials, we show that the bending of an Airy surface plasmon beam can be fully reversed by the potential.We acknowledge support from the Australian Research Council and the Australian National Computational Infrastructure

    Observation of optical azimuthons

    No full text
    We observe experimentally optical azimuthons, a generic class of ring-shaped localised spiralling beams with azimuthal modulation, carrying phase dislocation in self-focusing nonlinear media. We observe three- and four-lobe azimuthons in 87Rb vapours and demonstrate their anomalous rotation controlled by the input phase distribution

    Generation and Near-Field Imaging of Airy Surface Plasmons

    Get PDF
    We demonstrate experimentally the generation and near-field imaging of nondiffracting surface waves, plasmonic Airy beams, propagating on the surface of a gold metal film. The Airy plasmons are excited by an engineered nanoscale phase grating, and demonstrate significant beam bending over their propagation. We show that the observed Airy plasmons exhibit self-healing properties, suggesting novel applications in plasmonic circuitry and surface optical manipulation

    Measurement of scaling laws for shock waves in thermal nonlocal media

    Full text link
    We are able to detect the details of spatial optical collisionless wave-breaking through the high aperture imaging of a beam suffering shock in a fluorescent nonlinear nonlocal thermal medium. This allows us to directly measure how nonlocality and nonlinearity affect the point of shock formation and compare results with numerical simulations.Comment: 4 pages, 4 figure
    corecore