936 research outputs found

    Strong Correlations in Electron Doped Phthalocyanine Conductors Near Half Filling

    Full text link
    We propose that electron doped nontransition metal-phthalocyanines (MPc) like ZnPc and MgPc, similar to those very recently reported, should constitute novel strongly correlated metals. Due to orbital degeneracy, Jahn-Teller coupling and Hund's rule exchange, and with a large on-site Coulomb repulsion, these molecular conductors should display, particularly near half filling at two electrons/molecule, very unconventional properties, including Mott insulators, strongly correlated superconductivity, and other intriguing phases.Comment: 4 pages, 1 figure, submited to PR

    Multiple origins of extra electron diffractions in fcc metals

    Full text link
    Diffuse intensities in the electron diffraction patterns of concentrated face-centered cubic solid solutions have been widely attributed to chemical short-range order, although this connection has been recently questioned. This article explores the many non-ordering origins of commonly reported features using a combination of experimental electron microscopy and multislice diffraction simulations, which suggest that diffuse intensities largely represent thermal and static displacement scattering. A limited number of observations may reflect additional contributions from planar defects, surface terminations incommensurate with bulk periodicity, or weaker dynamical effectsComment: 8 pages, 3 figure

    Extra electron reflections in concentrated alloys may originate from planar defects, not short-range order

    Full text link
    In many concentrated alloys of current interest, the observation of diffuse superlattice intensities by transmission electron microscopy has been attributed to the presence of chemical short-range order. This interpretation is questioned on the basis of crystallographic considerations and theoretical predictions of ordering. The work of Xiao and Daykin [Ultramicroscopy 53 (1994)], which shows how planar defects can produce the exact set of observed peaks, is highlighted as an alternative explanation that would impact the conclusions of a number of recent studies.Comment: 5 pages, 3 figure

    Overtaking CPU DBMSes with a GPU in whole-query analytic processing with parallelism-friendly execution plan optimization

    Get PDF
    Existing work on accelerating analytic DB query processing with (discrete) GPUs fails to fully realize their potential for speedup through parallelism: Published results do not achieve significant speedup over more performant CPU-only DBMSes when processing complete queries. This paper presents a successful

    Plastic flow and failure resistance of metallic glass: Insight from \u3cem\u3ein situ\u3c/em\u3e compression of nanopillars

    Get PDF
    We report in situ nanocompression tests of Cu-Zr-Al metallic glass (MG) pillars in a transmission electron microscope. This technique is capable of spatially and temporally resolving the plastic flow in MGs. The observations reveal the intrinsic ability of fully glassy MGs to sustain large plastic strains, which would otherwise be preempted by catastrophic instability in macroscopic samples and conventional tests. The high ductility in volume-limited MGs and the sample size effects in suppressing the rapid failure common to MGs are analyzed by modeling the evolution of the collectivity of flow defects toward localization

    Fabrication of GaNxAs1-x Quantum Structures by Focused Ion Beam Patterning

    Full text link
    A novel approach to the fabrication of GaNxAs1-x quantum dots and wires via ion beam patterning is presented. Photomodulated reflectance spectra confirm that N can be released from the As sublattice of an MBE-grown GaNxAs1-x film by amorphization through ion implantation followed by regrowth upon rapid thermal annealing (RTA). Amorphization may be achieved with a focused ion beam (FIB), which is used to implant Ga ions in patterned lines such that annealing produces GaAs regions within a GaNxAs1-x film. The profiles of these amorphized lines are dependent upon the dose implanted, and the film reaches a damage threshold during RTA due to excess Ga. By altering the FIB implantation pattern, quantum dots or wires may be fabricated.Comment: To appear in the proceedings of the 27th International Conference on the Physics of Semiconductors (ICPS-27, Flagstaff, AZ, July 26-30, 2004

    Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys close to liquid helium temperatures

    Full text link
    Medium- and high-entropy alloys based on the CrCoNi-system have been shown to display outstanding strength, tensile ductility and fracture toughness (damage-tolerance properties), especially at cryogenic temperatures. Here we examine the JIc and (back-calculated) KJIc fracture toughness values of the face-centered cubic, equiatomic CrCoNi and CrMnFeCoNi alloys at 20 K. At flow stress values of ~1.5 GPa, crack-initiation KJIc toughnesses were found to be exceptionally high, respectively 235 and 415 MPa(square-root)m for CrMnFeCoNi and CrCoNi, with the latter displaying a crack-growth toughness Kss exceeding 540 MPa(square-root)m after 2.25 mm of stable cracking, which to our knowledge is the highest such value ever reported. Characterization of the crack-tip regions in CrCoNi by scanning electron and transmission electron microscopy reveal deformation structures at 20 K that are quite distinct from those at higher temperatures and involve heterogeneous nucleation, but restricted growth, of stacking faults and fine nano-twins, together with transformation to the hexagonal closed-packed phase. The coherent interfaces of these features can promote both the arrest and transmission of dislocations to generate respectively strength and ductility which strongly contributes to sustained strain hardening. Indeed, we believe that these nominally single-phase, concentrated solid-solution alloys develop their fracture resistance through a progressive synergy of deformation mechanisms, including dislocation glide, stacking-fault formation, nano-twinning and eventually in situ phase transformation, all of which serve to extend continuous strain hardening which simultaneously elevates strength and ductility (by delaying plastic instability), leading to truly exceptional resistance to fracture.Comment: 31 pages, 10 figures, including Supplementary Informatio

    Transition to Long Range Magnetic Order in the Highly Frustrated Insulating Pyrochlore Antiferromagnet Gd_2Ti_2O_7

    Full text link
    Experimental evidence from measurements of the a.c. and d.c. susceptibility, and heat capacity data show that the pyrochlore structure oxide, Gd_2Ti_2O_7, exhibits short range order that starts developing at 30K, as well as long range magnetic order at T∼1T\sim 1K. The Curie-Weiss temperature, θCW\theta_{CW} = -9.6K, is largely due to exchange interactions. Deviations from the Curie-Weiss law occur below ∼\sim10K while magnetic heat capacity contributions are found at temperatures above 20K. A sharp maximum in the heat capacity at Tc=0.97T_c=0.97K signals a transition to a long range ordered state, with the magnetic specific accounting for only ∼\sim 50% of the magnetic entropy. The heat capacity above the phase transition can be modeled by assuming that a distribution of random fields acts on the 8S7/2^8S_{7/2} ground state for Gd3+^{3+}. There is no frequency dependence to the a.c. susceptibility in either the short range or long range ordered regimes, hence suggesting the absence of any spin-glassy behavior. Mean field theoretical calculations show that no long range ordered ground state exists for the conditions of nearest-neighbor antiferromagnetic exchange and long range dipolar couplings. At the mean-field level, long range order at various commensurate or incommensurate wave vectors is found only upon inclusion of exchange interactions beyond nearest-neighbor exchange and dipolar coupling. The properties of Gd$_2Ti_2O_7 are compared with other geometrically frustrated antiferromagnets such as the Gd_3Ga_5O_{12} gadolinium gallium garnet, RE_2Ti_2O_7 pyrochlores where RE = Tb, Ho and Tm, and Heisenberg-type pyrochlore such as Y_2Mo_2O_7, Tb_2Mo_2O_7, and spinels such as ZnFe_2O_4Comment: Letter, 6 POSTSCRIPT figures included. (NOTE: Figure 5 is not included --) To appear in Physical Review B. Contact: [email protected]
    • …
    corecore