19 research outputs found

    A Novel Floating High-Voltage Level Shifter with Pre-Storage Technique

    Get PDF
    This paper proposes a novel floating high-voltage level shifter (FHV-LS) with the pre-storage technique for high speed and low deviation in propagation delay. With this technology, the transmission paths from input to output are optimized, and thus the propagation delay of the proposed FHV-LS is reduced to as low as the sub-nanosecond scale. To further reduce the propagation delay, a pull-up network with regulated strength is introduced to reduce the fall time, which is a crucial part of the propagation delay. In addition, a pseudosymmetrical input pair is used to improve the symmetry of FHV-LS structurally to balance between the rising and falling propagation delays. Moreover, a start-up circuit is developed to initialize the output state of FHV-LS during the VDDH power up. The proposed FHV-LS is implemented using 0.3-µm HVCMOS technology. Post-layout simulation shows that the propagation delays and energy per transition of the proposed FHV-LS are 384 ps and 77.7 pJ @VH = 5 V, respectively. Finally, the 500-points Monte Carlo are performed to verify the performance and the stability

    The Influence of Sandstorms and Long-Range Transport on Polycyclic Aromatic Hydrocarbons (PAHs) in PM2.5 in the High-Altitude Atmosphere of Southern China

    No full text
    PM2.5 (Particulate Matter 2.5) samples were collected at Mount Heng and analyzed for polycyclic aromatic hydrocarbons (PAHs). During sampling, a sandstorm from northern China struck Mount Heng and resulted in a mean PM2.5 concentration of 150.61 μg/m3, which greatly exceeded the concentration measured under normal conditions (no sandstorm: 58.50 μg/m3). The average mass of PAHs in PM2.5 was 30.70 μg/g, which was much lower than in the non-sandstorm samples (80.80 μg/g). Therefore, the sandstorm increased particle levels but decreased PAH concentrations due to dilution and turbulence. During the sandstorm, the concentrations of 4- and 5-ring PAHs were below their detection limits, and 6-ring PAHs were the most abundant. Under normal conditions, the concentrations of 2-, 3- and 6-ring PAHs were higher, and 4- and 5-ring PAHs were lower relative to the other sampling sites. In general, the PAH contamination was low to medium at Mount Heng. Higher LMW (low molecular weight) concentrations were primarily linked to meteorological conditions, and higher HMW (high molecular weight) concentrations primarily resulted from long-range transport. Analysis of diagnostic ratios indicated that PM2.5 PAHs had been emitted during the combustion of coal, wood or petroleum. The transport characteristics and origins of the PAHs were investigated using backwards Lagrangian particle dispersion modeling. Under normal conditions, the “footprint” retroplumes and potential source contributions of PAHs for the highest and lowest concentrations indicated that local sources had little effect. In contrast, long-range transport played a vital role in the levels of PM2.5 and PAHs in the high-altitude atmosphere

    Evaluation of the Effects of Forest on Slope Stability and Its Implications for Forest Management: A Case Study of Bailong River Basin, China

    No full text
    Previous studies have shown that the mechanical effects of vegetation roots on slope stability can be classified as additional cohesion effects and anchorage effects. The present study investigated the combined mechanical effects (additional cohesion effects and anchorage effects) of vegetation on a slope with coarse-grained soil in the mountainous region (significantly prone to slope failure) of Gansu Province, China. A detailed survey of tree density, root system morphology and slope profiles was conducted, and we also assessed the soil cohesion provided by the root systems of monospecific stands of Robinia pseudoacacia growing in different locations on the slope. The measured data were incorporated into a numerical slope model to calculate the stability of the slope under the influence of trees. The results indicated that it was necessary to consider the anchoring effect of coarse roots when estimating the mechanical effects of trees on slope stability. In particular, the FoS (factor of safety) of the slope was increased by the presence of trees. The results also demonstrated that vegetation increased slope stability. The reinforcing effects were most significant when the trees were planted along the entire slope. Although the reinforcing effects contributed by trees were limited (only 4–11%), they were essential for making optimal use of vegetation for enhancing slope stability. Overall, vegetation development can make a major contribution to ecosystem restoration in the study region

    Mechanical Characterization and Constitutive Modeling of Nano-Stabilized Soil under Uniaxial Compression

    No full text
    The stress–strain constitutive model under uniaxial compression is a basic element and important characterization method for determining physical and mechanical properties in cement-based materials research. In this study, a stress–strain constitutive model under uniaxial compression was established, which was based on a new nano-stabilized soil (NSS) through typical mechanical tests and constitutive relationship research. The results indicate that the unconfined compressive strength (UCS) of the nano-stabilized soil was enhanced with the increase in curing period and nano-stabilizer dosage, and that the strength growth rate reaches the maximum at a 12% dosage in the tested samples. The UCS of NSS under a 12% dosage is about 10~15% higher than that of ordinary stabilized soil (SS) without nano doping, and 25~40% higher compared with grade 42.5 cement-soil. The established constitutive model could accurately describe the linear-elastic and elastic-plastic deformation characteristics of NSS under uniaxial compression, which will be conducive to revealing the curve variation law of the stress–strain process. The research results could provide scientific support for the theoretical innovation and engineering application of green environmental protection materials

    Mechanical Characterization and Constitutive Modeling of Nano-Stabilized Soil under Uniaxial Compression

    No full text
    The stress–strain constitutive model under uniaxial compression is a basic element and important characterization method for determining physical and mechanical properties in cement-based materials research. In this study, a stress–strain constitutive model under uniaxial compression was established, which was based on a new nano-stabilized soil (NSS) through typical mechanical tests and constitutive relationship research. The results indicate that the unconfined compressive strength (UCS) of the nano-stabilized soil was enhanced with the increase in curing period and nano-stabilizer dosage, and that the strength growth rate reaches the maximum at a 12% dosage in the tested samples. The UCS of NSS under a 12% dosage is about 10~15% higher than that of ordinary stabilized soil (SS) without nano doping, and 25~40% higher compared with grade 42.5 cement-soil. The established constitutive model could accurately describe the linear-elastic and elastic-plastic deformation characteristics of NSS under uniaxial compression, which will be conducive to revealing the curve variation law of the stress–strain process. The research results could provide scientific support for the theoretical innovation and engineering application of green environmental protection materials

    Aberrances of Cortex Excitability and Connectivity Underlying Motor Deficit in Acute Stroke

    No full text
    Purpose. This study was aimed at evaluating the motor cortical excitability and connectivity underlying the neural mechanism of motor deficit in acute stroke by the combination of functional magnetic resonance imaging (fMRI) and electrophysiological measures. Methods. Twenty-five patients with motor deficit after acute ischemic stroke were involved. General linear model and dynamic causal model analyses were applied to fMRI data for detecting motor-related activation and effective connectivity of the motor cortices. Motor cortical excitability was determined as a resting motor threshold (RMT) of motor evoked potential detected by transcranial magnetic stimulation (TMS). fMRI results were correlated with cortical excitability and upper extremity Fugl-Meyer assessment scores, respectively. Results. Greater fMRI activation likelihood and motor cortical excitability in the ipsilesional primary motor area (M1) region were associated with better motor performance. During hand movements, the inhibitory connectivity from the contralesional to the ipsilesional M1 was correlated with the degree of motor impairment. Furthermore, ipsilesional motor cortex excitability was correlated with an enhancement of promoting connectivity in ipsilesional M1 or a reduction of interhemispheric inhibition in contralesional M1. Conclusions. The study suggested that a dysfunction of the ipsilesional M1 and abnormal interhemispheric interactions might underlie the motor disability in acute ischemic stroke. Modifying the excitability of the motor cortex and correcting the abnormal motor network connectivity associated with the motor deficit might be the therapeutic target in early neurorehabilitation for stroke patients
    corecore