23 research outputs found

    Attractiveness of a Four-component Pheromone Blend to Male Navel Orangeworm Moths

    Get PDF
    The attractiveness to male navel orangeworm moth, Amyelois transitella, of various combinations of a four-component pheromone blend was measured in wind-tunnel bioassays. Upwind flight along the pheromone plume and landing on the odor source required the simultaneous presence of two components, (11Z,13Z)-hexadecadienal and (3Z,6Z,9Z,12Z,15Z)-tricosapentaene, and the addition of either (11Z,13Z)-hexadecadien-1-ol or (11Z,13E)-hexadecadien-1-ol. A mixture of all four components produced the highest levels of rapid source location and source contact. In wind-tunnel assays, males did not seem to distinguish among a wide range of ratios of any of the three components added to (11Z,13Z)-hexadecadienal. Dosages of 10 and 100 ng of the 4-component blend produced higher levels of source location than dosages of 1 and 1,000 ng

    Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system

    Get PDF
    The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids
    corecore