62 research outputs found

    Hippocampus, Amygdala and Basal Ganglia Based Navigation Control

    Get PDF
    In this paper we present a novel robot navigation system aimed at testing hypotheses about the roles of key brain areas in foraging behavior of rats. The key components of the control network are: 1. a Hippocampus inspired module for spatial localization based on associations between sensory inputs and places; 2. an Amygdala inspired module for the association of values with places and sensory stimuli; 3. a Basal Ganglia inspired module for the selection of actions based on the evaluated sensory inputs. By implementing this Hippocampus-Amygdala-Basal Ganglia based control network with a simulated rat embodiment we intend to test not only our understanding of the individual brain areas but especially the interaction between them. Understanding the neural circuits that allows rats to efficiently forage for food will also help to improve the ability of robots to autonomously evaluate and select navigation targets

    Layered control architectures in robots and vertebrates

    Get PDF
    We revieiv recent research in robotics, neuroscience, evolutionary neurobiology, and ethology with the aim of highlighting some points of agreement and convergence. Specifically, we com pare Brooks' (1986) subsumption architecture for robot control with research in neuroscience demonstrating layered control systems in vertebrate brains, and with research in ethology that emphasizes the decomposition of control into multiple, intertwined behavior systems. From this perspective we then describe interesting parallels between the subsumption architecture and the natural layered behavior system that determines defense reactions in the rat. We then consider the action selection problem for robots and vertebrates and argue that, in addition to subsumption- like conflict resolution mechanisms, the vertebrate nervous system employs specialized selection mechanisms located in a group of central brain structures termed the basal ganglia. We suggest that similar specialized switching mechanisms might be employed in layered robot control archi tectures to provide effective and flexible action selection

    Overview of the JET results in support to ITER

    Get PDF

    Metabolic costs of brain size evolution

    No full text
    In the ongoing discussion about brain evolution in vertebrates, the main interest has shifted from theories focusing on energy balance to theories proposing social or ecological benefits of enhanced intellect. With the availability of a wealth of new data on basal metabolic rate (BMR) and brain size and with the aid of reliable techniques of comparative analysis, we are able to show that in fact energetics is an issue in the maintenance of a relatively large brain, and that brain size is positively correlated with the BMR in mammals, controlling for body size effects. We conclude that attempts to explain brain size variation in different taxa must consider the ability to sustain the energy costs alongside cognitive benefits

    Time off work due to scaphoid fractures and other carpal injuries in The Netherlands in the period 1990 to 1993

    No full text
    This study assessed the epidemiology, treatment, disability and time off work due to carpal injuries in the Netherlands in the period from 1990 to 1993. Most injuries were scaphoid fractures and carpal instabilities were rare, The time off work was considerable (mean, 155 days; median, 105 days; range, 12-1708 days), Patients with non-scaphoid fractures had the shortest time off work, followed by those with scaphoid fractures; patients with carpal instabilities had the longest time off work, Despite the significant time off work, the prognosis for return to work was excellent

    Analysis of finite grid structures with lenses in quasi-optical systems

    No full text
    corecore