3 research outputs found

    Nonlinear Optical Rectification of Confined Exciton in a ZnO/ZnMgO Strained Quantum Dot

    Get PDF
    Heavy hole exciton binding energies as functions of dot radius and the Mg alloy content in a ZnO/MgxZn1 – xO quantum dot are investigated. The effects of strain, including the hydrostatic and the biaxial strain, and the internal electric field, due to spontaneous and piezoelectric polarization are taken into account. Numerical calculations are performed using variational procedure within the single band effective mass approximation. The nonlinear optical rectification is investigated for different dot radius and the values of Mg alloy content in a ZnO/MgxZn1 – xO quantum dot taking into account the strain-induced piezoelectric effects. The results show that the resonant peak of the nonlinear optical rectification is blue shifted with the confinement effect and the Mg alloy content. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3026
    corecore