233 research outputs found

    Effects of Langmuir Kinetics of Two-Lane Totally Asymmetric Exclusion Processes in Protein Traffic

    Full text link
    In this paper, we study a two-lane totally asymmetric simple exclusion process (TASEP) coupled with random attachment and detachment of particles (Langmuir kinetics) in both lanes under open boundary conditions. Our model can describe the directed motion of molecular motors, attachment and detachment of motors, and free inter-lane transition of motors between filaments. In this paper, we focus on some finite-size effects of the system because normally the sizes of most real systems are finite and small (e.g., size ≤10,000\leq 10,000). A special finite-size effect of the two-lane system has been observed, which is that the density wall moves left first and then move towards the right with the increase of the lane-changing rate. We called it the jumping effect. We find that increasing attachment and detachment rates will weaken the jumping effect. We also confirmed that when the size of the two-lane system is large enough, the jumping effect disappears, and the two-lane system has a similar density profile to a single-lane TASEP coupled with Langmuir kinetics. Increasing lane-changing rates has little effect on density and current after the density reaches maximum. Also, lane-changing rate has no effect on density profiles of a two-lane TASEP coupled with Langmuir kinetics at a large attachment/detachment rate and/or a large system size. Mean-field approximation is presented and it agrees with our Monte Carlo simulations.Comment: 15 pages, 8 figures. To be published in IJMP

    On Steam Pipe Network Modeling and Flow Rate Calculation

    Get PDF
    AbstractThe paper demonstrates the method to set up the pipe network hydraulic-thermal synthetic mode by applying hydraulic and thermal models of single pipe, and proposes the algorithm based on searching for the problem that iterative calculation sometimes cannot derive convergent reasonable result as well. Compared the calculated values with the measurements, it shows the validation of the model and effectiveness of the algorithm

    Evidence for quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy

    Full text link
    We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature Tc = 335 K by angle-resolved photoemission spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum value of 190 meV is observed in the quasi-one-dimensional band formed by Te px orbitals. The CDW gap can be filled by increasing temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW
    • …
    corecore