15 research outputs found

    Efficiency Analysis of the Coastal Port Group in the Yangtze River Delta

    No full text
    In recent years, the coastal ports of the Yangtze River Delta have rapidly developed with the progress of science and technology, which has caused some problems on account of the rapid development of ports. On the one hand, there is fierce competition within the same port group; on the other hand, many ports waste resources. This study selected the three-stage data envelopment analysis (DEA) and Malmquist index models to calculate and analyze the efficiency value of the coastal port group in the Yangtze River Delta; the study was conducted to make a reference for the formulation of the optimization strategy from the perspectives of static and dynamic efficiency. The results show that from the perspective of static efficiency, the comprehensive efficiency of the Yangtze River Delta coastal port cluster is at the upper-middle level. However, it has not yet reached the frontier surface, and the low scale efficiency is why the port group has not been called the frontier surface. From the perspective of dynamic efficiency, the total factor productivity of the Yangtze River Delta port group has increased by 3.6% in the past five years. Technological progress and comprehensive technical efficiency have improved. The optimization strategy was formulated according to the problems faced by the Yangtze River Delta port group and the reasons for not reaching the frontier

    Culture Supernatant of Enterococcus faecalis Promotes the Hyphal Morphogenesis and Biofilm Formation of Candida albicans

    No full text
    (1) Background: Enterococcus faecalis and Candida albicans are often isolated from infected root canals. The interaction between these two species is not clear enough. Therefore, the objective of this study was to investigate the effect of E. faecalis on the biofilm formation, hyphal morphogenesis and virulence gene expression of C. albicans. (2) Methods: We used the culture supernatant of E. faecalis (CSE) to treat the biofilms of C. albicans. Then, crystal violet staining and colony-forming unit (CFU) counting were performed to evaluate biofilm biomass. Scanning electron microscopy (SEM) and confocal laser scanning microscope (CLSM) were applied to observe fungal morphology. Subsequently, exopolymeric substances (EPS) production, cellular surface hydrophobicity (CSH) and adhesion force of biofilms were investigated by CLSM, water–hydrocarbon two-phase assay and atomic force microscopy (AFM), respectively. Finally, the expression of C. albicans virulence genes (ALS1, ALS3, HWP1 and EFG1) were measured by RT-qPCR assay. (3) Results: The exposure of CSE promoted the biofilm formation and hyphal morphogenesis of C. albicans, increased the EPS production, CSH and adhesion force of C. albicans biofilms, and increased the expression level of EFG1. (4) Conclusions: Our data indicated that CSE promoted the hyphal morphogenesis and biofilm formation of C. albicans

    Hierarchical porous photosensitizers with efficient photooxidation

    No full text
    Abstract Photosensitizers (PSs) with nano- or micro-sized pore provide a great promise in the conversion of light energy into chemical fuel due to the excellent promotion for transporting singlet oxygen (1O2) into active sites. Despite such hollow PSs can be achieved by introducing molecular-level PSs into porous skeleton, however, the catalytic efficiency is far away from imagination because of the problems with pore deformation and blocking. Here, very ordered porous PSs with excellent 1O2 generation are presented from cross-linking of hierarchical porous laminates originated by co-assembly of hydrogen donative PSs and functionalized acceptor. The catalytic performance strongly depends on the preformed porous architectures, which is regulated by special recognition of hydrogen binding. As the increasing of hydrogen acceptor quantities, 2D-organized PSs laminates gradually transform into uniformly perforated porous layers with highly dispersed molecular PSs. The premature termination by porous assembly endows superior activity as well as specific selectivity for the photo-oxidative degradation, which contributes to efficient purification in aryl-bromination without any postprocessing

    Mycobacterium tuberculosis clinical isolates carry mutational signatures of host immune environments

    Get PDF
    9 páginas, 4 figuras. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. Sequencing reads have been submitted to the European Nucleotide Archive (EMBL-EBI) under study accession PRJEB34582 and PRJEB34609. The analysis scripts used in this study are available online at GitHub (https://github.com/StopTB/Single_Colony_Project).Mycobacterium tuberculosis (Mtb) infection results in a spectrum of clinical and histopathologic manifestations. It has been proposed that the environmental and immune pressures associated with different contexts of infection have different consequences for the associated bacterial populations, affecting drug susceptibility and the emergence of resistance. However, there is little concrete evidence for this model. We prospectively collected sputum samples from 18 newly diagnosed and treatment-naïve patients with tuberculosis and sequenced 795 colony-derived Mtb isolates. Mutant accumulation rates varied considerably between different bacilli isolated from the same individual, and where high rates of mutation were observed, the mutational spectrum was consistent with reactive oxygen species-induced mutagenesis. Elevated bacterial mutation rates were identified in isolates from HIV-negative but not HIV-positive individuals, suggesting that they were immune-driven. These results support the model that mutagenesis of Mtb in vivo is modulated by the host environment, which could drive the emergence of variants associated with drug resistance in a host-dependent manner.This work was supported by the National Natural Science Foundation of China (91631301 and 81661128043 to Q.G., 81701975 to Q.L., and 31771416 to X.L.), the National Science and Technology Major Project of China (2017ZX10201302 to Q.G. and 2018ZX10714002-001-005 to Z.Z.), the Sanming Project of Medicine in Shenzhen (SZSM201611030 to Q.G.), European Research Council 638553-TB-AcCELERATE (to I.C.), the Key Research Program of the Chinese Academy of Sciences (KFZD-SW-220-1 to X.L.), and the CAS Light of West China Program (to X.L.). Y.F. is supported in part by NIH R01HG009524. Support was also received from NIH awards P01 AI132130 and AI142793 to S.M.F.Peer reviewe

    Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation

    No full text
    Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biofilm formation on denture base resin. Colony forming unit (CFU) counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH) array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE) staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05). Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis

    Heat-Polymerized Resin Containing Dimethylaminododecyl Methacrylate Inhibits Candida albicans Biofilm

    No full text
    The prevalence of stomatitis, especially caused by Candida albicans, has highlighted the need of new antifungal denture materials. This study aimed to develop an antifungal heat-curing resin containing quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and evaluate its physical performance and antifungal properties. The discs were prepared by incorporating DMADDM into the polymer liquid of a methyl methacrylate-based, heat-polymerizing resin at 0% (control), 5%, 10%, and 20% (w/w). Flexure strength, bond quality, surface charge density, and surface roughness were measured to evaluate the physical properties of resin. The specimens were incubated with C. albicans solution in medium to form biofilms. Then Colony-Forming Units, XTT assay, and scanning electron microscope were used to evaluate antifungal effect of DMADDM-modified resin. DMADDM modified acrylic resin had no effect on the flexural strength, bond quality, and surface roughness, but it increased the surface charge density significantly. Meanwhile, this new resin inhibited the C. albicans biofilm significantly according to the XTT assay and CFU counting. The hyphae in C. albicans biofilm also reduced in DMADDM-containing groups observed by SEM. DMADDM modified acrylic resin was effective in the inhibition of C. albicans biofilm with good physical properties

    Short-Time Antibacterial Effects of Dimethylaminododecyl Methacrylate on Oral Multispecies Biofilm In Vitro

    No full text
    Quaternary ammonium compounds constitute a large group of antibacterial chemicals with a potential for inhibiting dental plaque. The aims of this study were to evaluate short-time antibacterial and regulating effects of dimethylaminododecyl methacrylate (DMADDM) on multispecies biofilm viability, reformation, and bacterial composition in vitro. DMADDM, chlorhexidine (CHX), and sodium fluoride (NaF) were chosen in the present study. Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii were used to form multispecies biofilm. Cytotoxicity assay was used to determine the optimal tested concentration. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and resazurin test of biofilm were conducted to study the biomass changes and metabolic changes of controlled multispecies biofilm. Scanning electron microscopy (SEM) was used to observe biofilm images. TaqMan real-time polymerase chain reaction was performed to evaluate the proportion change in multispecies biofilm of different groups. Cytotoxicity assay showed that there existed a certain concentration application range for DMADDM, CHX, and NaF. MTT assay and resazurin test results showed that DMADDM and CHX groups decreased multispecies biofilm growth and metabolic activity (p < 0.05), no matter after 1 min or 5 min direct contact killing or after 24 h regrowth. The proportion of S. mutans decreased steadily in DMADDM and CHX groups after 1 min and 5 min direct contact killing and 24 h regrowth, compared to control groups. A novel DMADDM-containing solution was developed, achieving effective short-time antibacterial effects and regulation ability of biofilm formation

    Anti-Caries Effects of Dental Adhesives Containing Quaternary Ammonium Methacrylates with Different Chain Lengths

    No full text
    The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs) with different alkyl chain lengths (CL) on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM), and transverse microradiography (TMR) were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”
    corecore