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M I C R O B I O L O G Y

Mycobacterium tuberculosis clinical isolates carry 
mutational signatures of host immune environments
Qingyun Liu1,2*, Jianhao Wei3*, Yawei Li4,5*, Mei Wang3, Jun Su3, Yonghui Lu3,  
Mariana G. López6, Xueqin Qian3, Zhaoqin Zhu3, Haiying Wang7, Mingyun Gan8, Qi Jiang1,9, 
Yun-Xin Fu10, Howard E. Takiff11,12, Iñaki Comas6,13, Feng Li3†, Xuemei Lu14,15†,  
Sarah M. Fortune2,16,17†, Qian Gao1,9†

Mycobacterium tuberculosis (Mtb) infection results in a spectrum of clinical and histopathologic manifestations. It 
has been proposed that the environmental and immune pressures associated with different contexts of infection 
have different consequences for the associated bacterial populations, affecting drug susceptibility and the 
emergence of resistance. However, there is little concrete evidence for this model. We prospectively collected 
sputum samples from 18 newly diagnosed and treatment- naïve patients with tuberculosis and sequenced 795 
colony-derived Mtb isolates. Mutant accumulation rates varied considerably between different bacilli isolated 
from the same individual, and where high rates of mutation were observed, the mutational spectrum was 
consistent with reactive oxygen species– induced mutagenesis. Elevated bacterial mutation rates were identified 
in isolates from HIV-negative but not HIV-positive individuals, suggesting that they were immune-driven. These 
results support the model that mutagenesis of Mtb in vivo is modulated by the host environment, which could 
drive the emergence of variants associated with drug resistance in a host-dependent manner.

INTRODUCTION
Infection with Mycobacterium tuberculosis (Mtb) causes a spectrum 
of clinical outcomes, from latent infection to active disease. During 
latent infection, Mtb can survive in the infected host for decades, 
creating a reservoir that continuously fuels the global tuberculosis 
(TB) epidemic (1). Control of the TB epidemic has been complicated 
by the emergence of high-level antibiotic resistance, which occurs 
through de novo chromosomal mutations (2). We understand little 
about the rates and drivers of mutation in Mtb within the infected 
host where the bacterial population is thought to face a range of 
different environments and immunologic stresses in different disease 
states, as reflected by different histopathologic manifestations of in-
fection, including granuloma formation and less-organized areas of 
inflammation. It is postulated that host immune stressors drive the 

bacterial population toward a nonreplicative state. Thus, replication- 
associated mutations are predicted to accumulate at very low rates 
(3–5). However, a study in the macaque TB model found that Mtb 
accumulated mutations at roughly the same rate during both active 
disease and early latent infection as during rapid growth in vitro (5). 
This mutant accumulation rate is remarkably similar to the molec-
ular clock estimated from the study of human Mtb isolates, suggest-
ing that there are additional drivers of mutation in vivo (6).

Whole-genome sequencing has been used to track the evolution of 
Mtb bacilli within the host during antibiotic treatment and demonstrate 
how drug-resistant mutations arise and become fixed in the popu-
lation (7–10). When a patient develops active TB, they are estimated 
to harbor 1010 to 1012 bacilli (11), and such a large population should 
contain numerous genetic mutations that could be used to study the 
mutagenesis of Mtb in vivo (8, 10, 12). Because antibiotic treatment 
can reduce Mtb population and diversity very quickly, such muta-
tional records should be preserved only in treatment- naïve patients. 
By applying whole-genome sequencing to large numbers of in-
dividual colonies recovered from 18 patients, we characterized the 
genetic diversity of Mtb populations at the onset of TB disease and 
reconstructed the within-host evolution of Mtb. This approach pro-
vided sufficient resolution to characterize the mutational signature 
of Mtb at the individual colony level, which should represent single 
bacilli in vivo. Our data indicate that mutagenesis of Mtb in vivo is 
modulated by the host environment, suggesting that the risk of de 
novo drug resistance varies in a host-dependent fashion.

RESULTS
Sampling Mtb population before antibiotics treatment
Between 1 February 2017 and 31 December 2018, we recruited 18 new, 
smear-positive patients with TB who had not taken any anti-TB 
drugs before the diagnosis. All of the isolates were pan-susceptible 
except for one isolate that was resistant only to isoniazid (table S1). 
We collected three to five sputum samples from the new patients 
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with TB on the day of diagnosis, which allowed us to deeply sample 
the Mtb populations in their pulmonary lesions that communicated 
with the airways. The sampling size of the Mtb population was esti-
mated to be between 25,000 and 150,000 bacilli per patient, accord-
ing to the conversion index between smear microscopic scores and 
bacterial load (13, 14). The sputum sample from each patient was 
digested, dispersed, serially diluted, and then cultured on Löwenstein- 
Jensen (L-J) solid medium (Fig. 1A). The remainder of the undiluted 
sputum was cultured separately to represent the whole population 
of bacilli present. For each patient, we randomly picked ~50 well- 
separated colonies for whole-genome sequencing (Fig. 1A). In addi-
tion, we scraped all the colonies from the whole population plates of 
nine patients for deep whole-genome sequencing (Fig. 1A).

Sequencing single colonies can delineate the Mtb 
population structure
In total, we obtained whole-genome sequence data for 795 single 
colonies from 18 patients (average sequencing depth is 119.4) and 
nine scraped whole populations (average sequencing depth is 726.3). 
Sequencing reads were aligned to the reconstructed ancestral genome 
of the Mtb complex to detect single-nucleotide polymorphisms (SNPs) 
(15). The SNPs shared by all colonies from a given patient were de-
fined as “inherited SNPs,” indicating phylogenetic SNPs that were 
fixed before the infection. The study then focused on the SNPs that 
were present in only a proportion of colonies that were termed “de 
novo SNPs” to indicate their de novo accumulation during infec-
tion. To verify that sequencing of ~50 colonies would represent the 
Mtb population structure in the original samples, we compared the 
frequency of SNPs detected in the deep-sequenced scraped whole 
population samples with their ratio in the single colonies. We de-
tected 107 SNPs with a frequency above 1.5% in the nine scraped 
samples, of which 67 (62.6%) could be detected with a similar fre-
quency in the corresponding single colonies (Pearson’s correlation 
coefficient: 0.982; Fig. 1B and fig. S1). The SNPs with higher fre-
quencies showed better correlation, while the SNPs with frequencies 
between 1.5 and 15% presented considerable variation between the 
scraped population samples and the individual colonies (Pearson’s 
correlation coefficient: 0.503; Fig. 1B). In addition, we detected 224 
SNPs that were present in only one or two single colonies but were 
not detected in the scraped samples, indicating the increased sensi-
tivity of single-colony sequencing for capturing low-frequency mu-
tations in the population.

Mtb diversity at the onset of TB disease
There was a broad range in the total number of de novo mutations 
found in the bacterial populations isolated from each patient (0 to 
116 SNPs; Fig. 1C), with the average number of de novo mutations 
varying from 0 to 11.3 SNPs (fig. S2A). However, the SNP distance 
between any two colonies from the same patient was much lower 
than between any two strains from different patients (fig. S2, B and C). 
Mapping of both the fixed and unfixed SNPs from each patient to 
our phylogenomic database for the identification of multiple evolu-
tionary paths (16) did not suggest any mixed infections in our samples. 
Of the 18 Mtb strains, 17 were lineage 2 strains and one belonged to 
lineage 4 (table S1).

Because the SNP distance between different bacilli within a sin-
gle individual is an important reference for establishing the SNP 
threshold for epidemiologically defining transmission clusters (17), 
we calculated the pairwise SNP distance between any two single col-

onies from each patient (Fig. 1D). For 91.0% of the pairs, the differ-
ence was ≤5 SNPs, and for 98.8% of the pairs, the difference was 
≤12 SNPs, indicating that these two widely used thresholds (5 or 
12 SNPs) encompass most of the genetic distance between different 
bacilli within a patient. However, in 7 of 18 patients, there were col-
ony pairs that differed by more than 5 SNPs and 3 of 18 patients had 
colony pairs that differed by more than 12 SNPs, indicating that 
these larger SNP distances can occur within an individual and thus 
could occasionally be found between isolates from cases linked by 
direct transmission.

Two patterns of Mtb population growth
We next used the minimum evolution method to reconstruct phy-
logenetic trees for the single colonies from each patient, setting the 
inferred ancestral genome as the root (Fig. 2). We found that the 
in vivo populations of Mtb separated into two different patterns: 
“starlike expansion” and “stepwise growth”. Ten patients were char-
acterized by the starlike expansion model (Fig. 2A). For these cases, 
only a few colonies showed de novo SNPs, while the majority main-
tained the ancestral genome (Fig. 2A). This pattern suggests a bac-
terial population derived from a recent expansion, with a starting 
population that was genetically homogeneous. This observation was 
consistent with a model in which a small number of Mtb bacilli es-
tablished the infection, proliferated, and caused TB disease relatively 
rapidly (18).

By contrast, eight patients presented a pattern of stepwise growth, 
typically suggesting two or three stages (Fig. 2B): (i) growth after the 
initial infection with divergence into subpopulations containing 
different SNP markers, (ii) a limited number of subpopulations 
achieving a second wave of growth with further genetic differentia-
tion of the within-host Mtb population, and (iii) recent expansion 
of one or a very few of the subpopulations. It appeared that 68.7 to 
96.0% of the colonies were the result of the expansion at the third 
stage. These inferences rely on the assumption that the initial infec-
tion was established by a single or a few genetically homogeneous 
bacilli of Mtb, as appeared to be typical in the cases with starlike 
expansions. However, the possibility of initial infections with several 
different, closely related bacilli cannot be conclusively ruled out. In 
either scenario, the patterns suggested that a large proportion of the 
Mtb population at the time of clinically detectable TB disease de-
rived from a recently expanded subpopulation.

Mutation rate varies between bacilli within  
a single individual
There was a variation in the number of de novo SNPs that accu-
mulated in different colonies from the same patient (Fig. 1E). For 
example, for patients J and P in the starlike group, and patients A, 
C, I, K, Q, H, and S in the stepwise group, a few colonies (marked by 
gray stars) accumulated 4 to 14 de novo SNPs, while most colonies 
maintained the ancestral genotypes (Fig. 2). Because the in vivo 
mutation rate of Mtb is approximately 0.24 to 0.5 SNPs per genome 
per year (17, 19–21), this disparity suggested that the mutation rate 
in vivo might not be uniform. To test this, we simulated Mtb popu-
lation growth in silico using a growth model with a constant muta-
tion rate (Wright-Fisher model) (22). The simulated data showed 
that the distribution of numbers of de novo SNPs appeared as a very 
convergent Poisson distribution with only one peak (Fig. 3). In con-
trast, the observed data for patients H, I, J, and S showed multiple 
peaks in the distribution of the number of de novo SNPs. A comparison 
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of the 0.9 quantiles in the observed and simulated data shows that H, 
I, J, and S had several colonies with more de novo SNPs than were 
predicted (Fig. 3), suggesting a deviation from a constant mutation 
rate model. An alternative explanation might be positive selection 
that preferentially selected beneficial mutations. To test this possi-
bility, we compared the proportion of nonsynonymous to synony-
mous mutations (pNS, similar to dN/dS; see details in Materials and 
Methods) in the de novo SNPs from the four patients whose colo-
nies had the most SNPs (H, I, J, and S) against those of the other 
patients. We found that the average pNS value for the four patients 
with high SNP colonies was 0.64 (H, 0.67; I, 0.56; J, 0.83; S, 0.46), 
while it was 0.79 for the other patients. This indicates a purifying 
selection in all patients and argues against positive selection as an 
explanation for the high SNP colonies.

Enhanced mutation rate likely induced by  
reactive oxygen species
The four patients, H, I, J, and S, whose colonies suggested non- 
constant mutation rates also had larger numbers of total de novo 
SNPs (Fig. 1C), and the majority of the SNPs were C>T and G>A, 

the base changes associated with oxidative damage (Fig. 4A) (23). 
Although oxidative damage mutations are the major source of 
genetic changes during in vivo growth (6, 23), the ratio of these mu-
tations in patients H, I, J, and S was significantly higher than the 
average level for all patients (80.6% versus 67.1%, P < 0.0001) and 
even higher than that of the fixed SNPs in a collection of 8399 ge-
nomes from global isolates (80.6% versus 47.2%, P < 0.0001; fig. S3). 
The most notable case was patient H, where 101 of the 116 (87.1%) 
total de novo SNPs were due to the base changes associated with 
oxidative damage. We further created histograms of mutation-type 
compositions for each colony and mapped them to the phylogenetic 
tree for each patient (Fig. 4B and fig. S4). For the 40 colonies from 
patient H, 27 had only 0 to 3 de novo SNPs, while 13 colonies had 
4 to 14 de novo SNPs. The extra SNPs in these 13 colonies were ex-
clusively mutations associated with oxidative damage—C-T and 
double CC-TT mutations (Fig. 4B)—which are thought to indicate 
exposure to reactive oxygen species (ROS) (24, 25). We also observed 
a similar pattern with I, J, and S (Fig. 4B). Moreover, the colonies 
with longer mutation branches from patients A, K, Q, and P can 
also be explained by C-T and CC-TT mutations (fig. S4).
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Fig. 1. Schematic diagram of the sampling approach and genetic diversity of the Mtb population within the host. (A) We repeatedly collected three to five sputum 
samples from new and treatment-naïve patients with TB. All sputum samples from a single individual were mixed together and processed with a standard procedure and 
then serially diluted. The target dilutions were spread onto five plates, while the remaining undiluted samples were mixed together and spread onto two plates. WGS, 
whole-genome sequencing. (B) The correlation between the frequencies of single-nucleotide polymorphisms (SNPs) in scraped samples and the relative single-colony 
samples was tested by Pearson’s correlation coefficient (r); the small inset shows an enlargement of the dashed box on the left. (C) A bar plot showing the numbers of de 
novo SNPs that were detected in colony samples in different patients with the number of SNPs that were not detected in the corresponding scraped whole population 
samples highlighted. (D) A histogram showing the distribution of pairwise SNP distance between any two single colonies from the same patient with the two dashed lines 
indicating the two commonly used SNP thresholds for defining transmission clusters. (E) A violin plot showing the distribution of numbers of de novo SNPs in single 
colonies from each patient.
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The elevated mutation rate was host dependent
This elevated mutation rate could be explained either by an increased 
susceptibility of these particular Mtb strains to oxidative damage or 
by increased bacterial exposure to oxidative stress in a subset of the 
patients. If some of the strains had increased ROS susceptibility, all 
of the colonies derived from these Mtb strains should exhibit simi-
lar patterns of mutations and comparable numbers of SNPs, but this 
was not what was observed; different colonies from the same strain 
showed a wide variation in de novo SNPs (Fig. 4B). In addition, 
strains that gave rise to colonies with higher mutation rates should 
have more C-T and CC-TT inherited mutations than the other 
strains, but there was no difference in the ratio of C-T and CC-TT 
between the two groups for the inherited mutations (fig. S5). Last, the 
four strains whose colonies had more mutations (H, I, J, and S) were 

not clustered in the phylogenetic tree, showing that the increased 
mutation rate was not a feature of a particular phylogenetic clade 
(fig. S6); besides, we found no homoplastic mutation between any 
two of these four strains. Together, these results suggest that 
increased bacterial susceptibility to ROS seemed to be not a plausi-
ble explanation for the higher mutation rates in a subset of colonies.

As the production and regulation of ROS and reactive nitrogen 
species are important components of the host immune response to 
pathogen infections, we hypothesized that the variation in the bac-
terial mutation rate could be host dependent. We compared the ratio 
of C-T mutations in Mtb samples collected from HIV-negative 
hosts (all 18 patients) in this study with the ratio from HIV-positive 
hosts in a previous study of 2587 Mtb single colonies from 42 HIV- 
positive hosts (12). This comparison showed that Mtb strains from 
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Fig. 2. Phylogenetic trees of Mtb populations from different patients. All trees are rooted to the inferred ancestral genome and all the “inherited SNPs” were excluded 
before the phylogenetic reconstruction. The length of solid lines represents the number of de novo SNPs. (A) “Starlike expansion” trees for these patients are shown in a 
circle format. Trees for patients G and R were not shown because no de novo SNPs were detected. (B) “Stepwise growth” trees for these patients are shown in rectangular 
format. Gray stars indicate those colonies with excessive de novo SNPs and the taxa names with blue backgrounds highlight the recently expanded populations.

0.0

0.1

0.2

0.3

0 2 4 6 8 10 12 14
Number of de novo SNPs

P
ro

po
rt

io
n 

of
 c

ol
on

ie
s

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6
Number of de novo SNPs

P
ro

po
rt

io
n 

of
 c

ol
on

ie
s

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
Number of de novo SNPs

P
ro

po
rt

io
n 

of
 c

ol
on

ie
s

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
Number of de novo SNPs

P
ro

po
rt

io
n 

of
 c

ol
on

ie
s

Patient H Patient I Patient J Patient SSimulated
Observed

Simulated
Observed

Simulated
Observed

Simulated
Observed

P = 0.0003 P = 0.0008 P = 0.0044 P = 0.0192

A B C D

Fig. 3. Comparison of the distribution of de novo SNP numbers between simulated and observed populations. (A to D) The comparisons of the Mtb populations 
from patients H, I, J, and S, respectively. The height of histograms shows the proportions of colonies with the relative number of de novo SNPs. The P values indicate the 
hypergeometric test for 0.9-quantile SNP numbers for the simulated and observed populations.



Liu et al., Sci. Adv. 2020; 6 : eaba4901     29 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 9

HIV- negative hosts accumulated more C-T mutations than those 
from HIV-positive hosts (P < 0.0001, Fig. 4, C and D), and the dif-
ference remained when we restricted this comparison to lineage 2 
strains from the two groups (P = 0.0005; fig. S7). Furthermore, the 
double CC-TT mutations were not observed in the Mtb colonies 
from HIV- positive hosts, and in these hosts, the phylogenetic trees 
of the de novo SNPs did not show colonies with “long branches” 
(fig. S8). These analyses thus suggest that the signature of ROS- 
associated mutations could be driven by immune pressure.

DISCUSSION
This work analyzed the population structure and mutation signa-
tures of Mtb by genome sequencing colonies isolated directly from 
clinical specimens, thereby allowing us to make inferences about the 
growth and evolution of the bacterial population during infection. 
The data present at least four clear findings: (i) distinct levels of 
bacterial diversity were observed in the Mtb populations from dif-
ferent patients; (ii) the pairwise SNP distance between any two 
colonies within a host could occasionally exceed the SNP thresholds 
used to define a transmission cluster; (iii) the number of de novo 
SNPs varied significantly between different bacilli within the same 
host, suggesting that the mutation rate varies between different bac-
teria within a host; and (iv) the elevated mutation rate in some 
colonies carries the signature of ROS-induced mutagenesis.

The estimated mutation rate of Mtb, about 0.5 mutations in every 
10,000 genomes copied (6), is low compared to most other bacteria, 
yet the high rates of acquired resistance in clinical strains raise the 

question of whether the mutation rate within the host could somehow 
be higher (4). The rate calculated from an in vivo macaque infection 
model was very similar to that inferred in vitro through fluctuation 
experiments, despite the differences in bacterial replication rates 
in vitro and in vivo (3, 5), and deep whole-genome sequencing of 
serial sputum samples from patients with TB taken during treatment 
revealed a high degree of genetic diversity with tens of unfixed SNPs 
(8, 26). In the current study, we found an increased rate of ROS- 
associated mutations that could perhaps explain the high rate of 
acquired resistance during clinical treatment. Those patients in whom 
Mtb is subjected to high levels of ROS mutagenesis should carry 
larger pools of mutations and, thus, perhaps have a higher risk for 
developing drug resistance. Further studies are warranted to under-
stand why some patients induce higher levels of ROS mutagenesis, 
how to identify them, and how to reduce their risk of developing of 
drug resistance.

Unexpectedly, only 4 of the 18 patients had bacterial populations 
wset of the colonies from each of these four patients. Because the 
excess mutations were predominantly the C-T changes, the results 
suggest that ROS stress can vary between hosts and also that ROS 
heterogeneity exists in different microenvironments within the 
same host. This model is consistent with the growing knowledge of 
granuloma heterogeneity, where each granuloma represents a micro-
environment that can be independently influenced by the local im-
mune response (27, 28). This inference was further supported by 
the lower ratio of C-T mutations in strains of HIV-positive patients, 
implying that the host immune status plays a role in the frequency 
of oxidative damage mutations.
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Because unfixed SNPs were detected in 39% of the single colonies, 
we scanned them for CC-TT mutations and, as expected, found 
them in the genomes of colonies isolated from the patients with an 
elevated mutation rate: H (9), I (11), J (14), and S (3). Unexpectedly, 
we also found CC-TT mutations in colonies from patients without 
elevated mutation rates: 26 in colonies from E, 2 from F, and 3 from 
O (fig. S9A). This suggests that the rates of ROS-induced mutations 
could have been underestimated in our study because of the limita-
tions of our sampling size and a mixture of different colonies.

We considered positive selection as an alternative explanation 
for the high numbers of SNPs found in some colonies but discarded 
this explanation for the following reasons. First, pNS analysis sug-
gested that a negative selection was operating on the bacterial pop-
ulation of strains H, I, J, and S, which was consistent with previous 
findings that within-host selective pressure on Mtb is governed by 
negative selection (8, 29, 30). Second, in the colonies with large 
numbers of SNPs, the mutation type of excessive SNPs was almost 
exclusively C-T or CC-TT. It seems unlikely that a particular muta-
tion type would be favored by positive selection, which should be 
based only on the functional impact of the mutations on the genes 
without a preference for a specific type of mutation. Third, if a pos-
itive selection was operating, we should expect to see some homo-
plasy or gene enrichment in the different colonies with large numbers 
of SNPs isolated from a single patient. However, we found neither 
homoplastic mutations nor gene enrichment across the colonies 
from each of the four strains that had high SNP colonies.

Our analysis suggested that increased bacterial susceptibility to 
ROS might not be a plausible explanation for the higher mutation 
rates in a subset of colonies, but we cannot completely rule out its 
role in the phenomenon we observed. Heterogeneity in the strains’ 
susceptibility to ROS could act together with host environmental 
stress and perhaps help explain why colonies with high numbers of 
SNPs were isolated only from some patients. Although we found no 
homoplastic mutations between any two of these four strains (H, I, 
J, and S) or mutations on the same gene but in different codons, it is 
still possible that mutations in different genes could have similar 
functional effects in increasing the susceptibility to ROS stress. The 
absence of C-T or CC-TT mutational signature in the inherited muta-
tions was a strong argument, but it cannot exclude the possibility that 
these four strains only acquired an increased “ROS susceptibility” 
very recently, for which they would not have accumulated many 
C-T or CC-TT in the inherited mutations.

The biological process of Mtb infection is difficult to study in humans, 
but PET-CT (positron emission tomography–computed tomography) 
tracking of the dynamic course of infection in cynomolgus macaques 
revealed that different lesions in the same patient followed diverse 
trajectories. While some granulomas were sterilized in both active 
and latent cases, others grew and ultimately determined the clinical 
outcome of infection (27). Typically, only one or a few granulomas 
that are unable to contain the bacteria are probably responsible 
for bacterial dissemination and the onset of active disease (12, 27, 31). 
Our results are consistent with these observations. We found that 
the burden of TB disease in humans often appeared the result of the 
recent expansion of a subpopulation of the bacilli present in the 
individual. Together, these findings suggest a “turning point” theory for 
the progression of TB disease, in which the deterioration of a particular 
lesion leads to clinical disease. Hence, finding biomarkers that can 
predict such a transition or detect it early would allow preventive inter-
ventions that might prevent the development of clinical TB disease.

For those patients with more mutational diversity, the proba-
bility was higher that the genomes of any two selected colonies dif-
fered by more than 5 SNPs, and pairs that differed by more than 
12 SNPs were not rare (fig. S9, B and C). This finding implies that 
the dominant subpopulation cultured and sequenced from one pa-
tient could differ by >12 SNPs from a variant that infects a second 
patient. In the second host, this transmitted bacillus could again 
mutate and generate a more distant variant that dominates when 
the second patient’s sputum is cultured and sequenced. The com-
monly used SNP thresholds of ≤5 SNP differences for direct trans-
mission and ≤ 12 SNPs for transmission clustered strains have been 
supported by epidemiologic data (17, 32), but our results suggest 
that strains with slightly more SNP differences might occasionally 
belong to the same transmission chain and deserve to be included 
when conducting epidemiological investigations.

The extent to which the sputum bacillary population is represen-
tative of the total mycobacterial population within an individual is 
unknown. An ideal and complete characterization of the Mtb diver-
sity within a host would require sampling from each lesion, which is 
not feasible in patients with TB. The bacilli in sputum mainly reflect 
Mtb population in lesions that are open and connected to the air-
way, so bacilli in lesions that were not open or connected to airways 
may not have been sampled and therefore not represented in our 
data. However, expectorated tubercle bacilli are thought to origi-
nate from sites of extensive bacterial growth that are the major con-
tributors to active disease (33, 34), so we assume that we sampled at 
least some of the most clinically relevant sites. In addition, different 
sputum samples collected on the same day could vary in the Mtb 
growth sites from which they derive, so to avoid bias, we repeatedly 
sampled from the same patient and pooled the specimens.

In conclusion, this study provides a baseline characterization of 
Mtb population diversity within the host during active TB disease, 
and the two patterns of population growth extend our understanding 
of Mtb proliferation in vivo. We show that the mutation rate of Mtb 
in vivo appears to vary, presumably related to the host environment. 
The possibility that the mutation rate may increase under certain 
in vivo conditions could help to understand how drug resist ance evolves.

MATERIALS AND METHODS
Study cohort
The patients were enrolled in the Shanghai Public Health Clinical 
Center (a designated hospital for TB), in Shanghai, China, and the 
study was approved by the ethics committee of this clinical center. 
The recruitment criteria for the patients with TB were as follows: (i) 
no previous history of TB disease, (ii) no previous anti-TB anti-
biotics, (iii) positive sputum smear for bacilli on microscopy with 
a score >1+, (iv) a qualified sputum volume at least 5 ml, and (v) 
drug-susceptible Mtb isolates. Initially, 20 patients were enrolled, but 
samples from two patients were excluded because one contained 
Mycobacterium kansasii and the other was contaminated with fungus, 
leaving 18 patient specimens for analysis (table S1). In the isolate 
from patient F, an inhA −15 C-T promoter mutation was found and 
drug sensitivity testing reported isoniazid resistance after whole- 
genome sequencing was performed. Because this patient had not 
previously taken any anti-TB drugs, the strain was included. The 
methods of this study were carried out in accordance with the ap-
proved guidelines, and written informed consent was obtained from 
the patients before the study.
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Sample collection and processing
Patients suspected to have TB were first screened according to re-
cruitment criteria 1 and 2. Routine smear microscopy was performed 
on the sputum samples, and the remaining sediment was temporarily 
stored at 4°C. Sputum quality was monitored and specimens with 
purulent sputum were preferentially frozen. The clinical center rou-
tinely performed GeneXpert MTB/RIF tests and culture-based drug 
susceptibility testing for isoniazid, rifampicin, ethambutol, and 
pyrazinamide. GeneXpert MTB/RIF results were reported on the 
same day as diagnosis. When a sputum sample had a microscopic 
score >1+ and was rifampicin sensitive by GeneXpert, a further 
three to five sputum samples were collected from these patients 
before the treatment was started. All sputum samples from each pa-
tient were combined to reach a total of at least 5 ml for each patient. 
The combined sputum samples were subjected to digestion with 1:1 of 
2% NaOH-NaCl and left standing for 15 min. Phosphate-buffered 
saline (PBS; pH 6.8) was added to a final volume of 50 ml and the 
samples were then centrifuged at 3000g for 15 min. The supernatant 
was discarded and the sediment was suspended in 1 ml of PBS solu-
tion. We then performed serial dilutions for each of the samples, 
and the dilution index was estimated based on the sputum smear 
results. For each target dilution, eight L-J medium plates were spread 
to obtain an estimated 50 colonies on each plate. The remainder of 
the original, undiluted sputum specimens from each patient was 
centrifuged and spread onto two L-J medium plates. From most 
patient isolates, 50 well-separated colonies were selected from 
different plates, but only 10 colonies were obtained from sample G. 
Each selected colony was spread onto a fresh L-J plate for a short 
amplification culture of 1 to 2 weeks and then collected for DNA 
extraction. For nine patients, all of the colonies from the two 
plates spread with the undiluted sputa were scraped into a single 
tube for DNA extraction and designated scraped, whole population 
samples.

Illumina sequencing and SNP calling
Genomic DNA from both the single-colony isolates and scraped 
whole population samples was extracted with the cetyltrimethylam-
monium bromide lysozyme method (35). A 300–base pair fragment 
length library was constructed for each DNA sample and paired-
end–sequenced on an Illumina HiSeq 2500 instrument. A previously 
validated pipeline was used for SNP calling (35). Fixed mutations 
with a frequency of ≥90% and at least 10 supporting reads were 
identified. Whole-genome sequence data of 8399 Mtb isolates from 
previous studies were downloaded and subjected to SNP calling to 
identify the ratio of C-T/G-A mutations in each isolate (35).

Filter for unfixed SNPs
A previously validated pipeline was used to filter out false positives 
and detect unfixed SNPs (8). We considered only unfixed SNPs 
whose frequencies were estimated to be ≥1.5% in whole population 
samples. Because the false positives shared similar patterns in the 
strains with close genetic backgrounds, we further used repetitive 
unfixed SNPs called from Shanghai Mtb isolates that had been pre-
viously sampled and sequenced as a background filter (32). Ideally, 
we should not find unfixed mutations in single-colony samples if 
each colony derived from a single bacillus (8). However, we detected 
≥1 unfixed SNP with allele frequencies above 10% but below 90% 
in 39.0% (310 of 795) of the single-colony samples. Because these 
unfixed SNPs survived our filters for false positives, we further ex-

amined their prevalence. We found that some unfixed SNPs detected 
in one colony from a patient were fixed SNPs (≥90%) in other col-
onies from the same patient but absent in colonies from other pa-
tients, suggesting that these unfixed SNPs were present because the 
colony had grown from more than one original, isolated bacillus or 
that colonies from separate bacilli grew into one another. Given 
these possibilities, we included the unfixed SNPs with frequencies 
above 50%, which represent the major clones for the subsequent 
analysis.

Phylogenetic reconstruction
For phylogenetic reconstructions, all SNP locations for each isolate 
were combined into a nonredundant consensus list and recalled 
with the mpileup2cns function of VarScan (version 2.3.9) (36). Nu-
cleotide positions with missing calls in more than 5% of the isolates 
were removed. An alignment of the remaining polymorphic posi-
tions from all strains was used for phylogeny reconstruction with 
MEGA 6.0 (37). To make the branch lengths represent the number 
of de novo SNPs, we used the minimum evolution method to infer 
the phylogenetic trees under the “No. of differences” model with 
both transitions and transversions included. The bootstrap method 
was used with 500 replications for each test. Phylogeny trees were 
visualized in FigTree (version 1.4.3) (http://tree.bio.ed.ac.uk/software/
figtree/).

Proportion of nonsynonymous to synonymous mutations
We wished to determine whether the excessive mutations in some 
colonies of the four patients, H, I, J, and S, were due to positive 
selection, which would accelerate the mutation frequency and fixa-
tion in the population. We therefore used pNS to evaluate the selec-
tive pressure in these patients’ samples and compared the values to 
those of the remaining patients (8). The basic principle of the pNS 
method is similar to that of dN/dS, but dN/dS is used to compare 
two real sequences that exist in nature, while pNS can be applied to 
concatenated sequences of all the mutations in the genomes. A co-
don substitution matrix was generated using a base substitution 
model that takes into account the proportion of guanine and cyto-
sine in the genome (percentage GC content, 0.656). Briefly, for each 
variant codon, we used a custom Python script to simulate 50,000 
individual introductions of a single mutation into the codon and 
scored the outcomes as either synonymous or nonsynonymous. We 
considered the average number of nonsynonymous outcomes of the 
simulations as an estimate of the probability that a mutation in the 
given codon would be nonsynonymous. The formula used to calcu-
late the pNS was described previously (8).

Simulating Mtb growth
We generated Mtb growth with continuously accumulating neutral 
mutations under a constant growth rate in silico, starting with a 
single bacillus cell and ending when the population size reached 108. 
The mutation rate that we chose here was 2.01 × 10−10 mutations 
per site per generation (6). Because our analysis excluded the muta-
tions in PPE/PE-PGRS family genes and other mobile sequences, 
which accounts for 8.9% of the whole genome, the genome size was 
set as 4.41 × 106 × 91.1% = 4.02 × 106. Then, the mutation rate () 
used was 0.0008 per genome per generation. Mtb bacilli in expo-
nential growth are represented by

   N  t   =  e   at   

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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where Nt is the number of bacilli in generation t with Nt = 1 and a is 
a constant number. If the average number of de novo mutations in 
the TB lineage of a patient is k, the number of generations from the 
first bacilli cell to 108 is k/. Therefore, the parameter  a =  
ln  N  t   _ t   = 8 × ln10 × 0.0008 / k ≈ 0.0147 / k .

The Wright-Fisher model (22) was used to simulate discrete TB 
growth. In generation t, the expected number of bacilli is Nt = 
e0.0147t/k. The bacilli in generation t were randomly sampled as prog-
enies of cells from generation t − 1. A newborn cell had a probability 
 of accumulating a de novo mutation in each cell division. The 
workflow of the simulation is displayed in fig. S10.

Test the heavy-tailed distribution
To test whether the de novo mutation number distribution of an ob-
served TB lineage is a heavy-tailed distribution, we sorted the mutation 
number of observed data and simulated data from lowest to highest 
separately and used a hypergeometric test to compare the 0.9-quantile 
mutation number of the observed data and simulated data.

Ethics statement
This study was approved by the Research Ethics Review Committee 
of the Shanghai Public Health Clinical Center, Fudan University.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/22/eaba4901/DC1

View/request a protocol for this paper from Bio-protocol.
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