187 research outputs found
Study on high-performance conductive fibers towards multifunctional e-textile: fabrication and applications (多機能電子テキスタイルを目指した高機能導電繊維の創製に関する研究)
信州大学(Shinshu university)博士(工学)この博士論文は、次の学術雑誌論文を一部に使用しています。 / Chemical Engineering Journal 425 :131551(2021); doi:10.1016/j.cej.2021.131551 © 2021 Elsevier B.V. All rights reserved./ Journal of Materials Chemistry C 8(13) :4564-4571(2020); doi:10.1039/c9tc05527d © 2020 The Royal Society of Chemistry/ Chemical Engineering Journal 457 :141164(2023); doi:10.1016/j.cej.2022.141164 © 2022 Elsevier B.V. All rights reserved./ NPJ FLEXIBLE ELECTRONICS 6(1) :34(2022); doi:10.1038/s41528-022-00171-x OA (CC BY 4.0) / Journal of Materials Chemistry C 10(34) :12323-12331(2022); doi:10.1039/d2tc02344j © 2022 The Royal Society of ChemistryThesisWANG MINGXU. Study on high-performance conductive fibers towards multifunctional e-textile: fabrication and applications (多機能電子テキスタイルを目指した高機能導電繊維の創製に関する研究). 信州大学, 2023, 博士論文. 博士(工学), 甲第809号, 令和05年03月20日授与.doctoral thesi
The Research of Product Graphical Information Sharing Technology of Virtual Manufacturing Enterprise in E-Commerce Environment
This paper has built a product model by UML and corresponding Product Schema. Then we have illuminated transmit mechanism of the product information by a dumbbell XML document. At last, we have pointed out the direction of the research. This research will provide a significative explore to the product data interchange between the members of virtual manufacturing enterprise in e-commerce environmen
Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method
A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM) has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method
GANet: Goal Area Network for Motion Forecasting
Predicting the future motion of road participants is crucial for autonomous
driving but is extremely challenging due to staggering motion uncertainty.
Recently, most motion forecasting methods resort to the goal-based strategy,
i.e., predicting endpoints of motion trajectories as conditions to regress the
entire trajectories, so that the search space of solution can be reduced.
However, accurate goal coordinates are hard to predict and evaluate. In
addition, the point representation of the destination limits the utilization of
a rich road context, leading to inaccurate prediction results in many cases.
Goal area, i.e., the possible destination area, rather than goal coordinate,
could provide a more soft constraint for searching potential trajectories by
involving more tolerance and guidance. In view of this, we propose a new goal
area-based framework, named Goal Area Network (GANet), for motion forecasting,
which models goal areas rather than exact goal coordinates as preconditions for
trajectory prediction, performing more robustly and accurately. Specifically,
we propose a GoICrop (Goal Area of Interest) operator to effectively extract
semantic lane features in goal areas and model actors' future interactions,
which benefits a lot for future trajectory estimations. GANet ranks the 1st on
the leaderboard of Argoverse Challenge among all public literature (till the
paper submission), and its source codes will be released
Unveiling precipitation behavior in Mg-Y based alloys
Mg-Y based alloys exhibit a promising combination of strength and deformability through tuning precipitation and solute strengthening mechanisms and tailoring the activity of non-basal dislocations. Understanding the precipitation sequence of Mg-Y based alloys and its dependence on Yttrium concentration in the matrix will provide a guideline for fine tuning structure, morphology and distribution of precipitates in Mg-Y based alloys. In this paper, we explore the precipitation behaviors of Mg-11Y (wt%) and Mg-11Y-1Al (wt%) alloys using aberration-corrected scanning transmission electron microscopy, and rationalize the experimental observations based on first-principles density functional theory calculations. The precipitation sequence during ageing at 225 °C is identified to be SSSS → clusters/G.P. Zones →β′ (Mg7Y) → β′′/βt′′ (Mg3Y). A novel βt′′ phase forms through in-situ transformation from the β′ phase, which shares the same Mg3Y composition with D019-β′′ phase and exhibits the same cbco-structure as β′ phase in Mg-Y based alloys
Satisfaction with care quality and anxiety among family members during nursing home visiting restrictions: The chain mediating effect of emotional regulation and perceived stress
IntroductionThis study aimed to investigate the psychological well-being (perceived stress and anxiety) of Chinese family members during nursing home visiting restrictions and to elucidate the relationships among satisfaction with care quality, emotion regulation, perceived stress, and anxiety.MethodsAn online survey was conducted with a cross-sectional study design. From 18 to 29 January 2022, a total of 571 family members of nursing home residents completed online questionnaires comprising socio-demographic characteristics, satisfaction with care quality, emotion regulation, perceived stress, and anxiety. Mediation analyses were performed to estimate the direct and indirect effects of satisfaction with care quality on anxiety using the PROCESS macro for SPSS.ResultsThe results showed that approximately one-quarter of Chinese family members had anxiety symptoms during nursing home visiting restrictions. Satisfaction with care quality affected anxiety via three mediating paths: (a) through cognitive reappraisal (effect = 0.028); (b) through cognitive reappraisal and perceived stress sequentially (effect = −0.057); and (c) through perceived stress (effect = −0.212). The chain mediating effect (path b) accounted for 23.7% of the total effect.ConclusionsThese findings corroborated our hypothesis that cognitive reappraisal (a kind of emotion regulation strategy) and perceived stress mediated the relationship between satisfaction with care quality and anxiety during nursing home visiting restrictions. Efforts to address family members’ psychological well-being by focusing on cognitive reappraisal should be considered
A Control and Posture Recognition Strategy for Upper-Limb Rehabilitation of Stroke Patients
At present, the study of upper-limb posture recognition is still in the primary stage; due to the diversity of the objective environment and the complexity of the human body posture, the upper-limb posture has no public dataset. In this paper, an upper extremity data acquisition system is designed, with a three-channel data acquisition mode, collect acceleration signal, and gyroscope signal as sample data. The datasets were preprocessed with deweighting, interpolation, and feature extraction. With the goal of recognizing human posture, experiments with KNN, logistic regression, and random gradient descent algorithms were conducted. In order to verify the superiority of each algorithm, the data window was adjusted to compare the recognition speed, computation time, and accuracy of each classifier. For the problem of improving the accuracy of human posture recognition, a neural network model based on full connectivity is developed. In addition, this paper proposes a finite state machine- (FSM-) based FES control model for controlling the upper limb to perform a range of functional tasks. In the process of constructing the network model, the effects of different hidden layers, activation functions, and optimizers on the recognition rate were experimental for the comparative analysis; the softplus activation function with better recognition performance and the adagrad optimizer are selected. Finally, by comparing the comprehensive recognition accuracy and time efficiency with other classification models, the fully connected neural network is verified in the human posture superiority in identification
A preliminary study on the application of electrical impedance tomography based on cerebral perfusion monitoring to intracranial pressure changes
BackgroundIn intracranial pathologic conditions of intracranial pressure (ICP) disturbance or hemodynamic instability, maintaining appropriate ICP may reduce the risk of ischemic brain injury. The change of ICP is often accompanied by the change of intracranial blood status. As a non-invasive functional imaging technique, the sensitivity of electrical impedance tomography (EIT) to cerebral hemodynamic changes has been preliminarily confirmed. However, no team has conducted a feasibility study on the dynamic detection of ICP by EIT technology from the perspective of non-invasive whole-brain blood perfusion monitoring. In this study, human brain EIT image sequence was obtained by in vivo measurement, from which a variety of indicators that can reflect the tidal changes of the whole brain impedance were extracted, in order to establish a new method for non-invasive monitoring of ICP changes from the level of cerebral blood perfusion monitoring.MethodsValsalva maneuver (VM) was used to temporarily change the cerebral blood perfusion status of volunteers. The electrical impedance information of the brain during this process was continuously monitored by EIT device and real-time imaging was performed, and the hemodynamic indexes of bilateral middle cerebral arteries were monitored by transcranial Doppler (TCD). The changes in monitoring information obtained by the two techniques were compared and observed.ResultsThe EIT imaging results indicated that the image sequence showed obvious tidal changes with the heart beating. Perfusion indicators of vascular pulsation obtained from EIT images decreased significantly during the stabilization phase of the intervention (PAC: 242.94 ± 100.83, p < 0.01); perfusion index which reflects vascular resistance increased significantly in the stable stage of intervention (PDT: 79.72 ± 18.23, p < 0.001). After the intervention, the parameters gradually returned to the baseline level before compression. The changes of EIT indexes in the whole process are consistent with the changes of middle cerebral artery velocity related indexes shown in TCD results.ConclusionThe EIT image combined with the blood perfusion index proposed in this paper can reflect the decrease of cerebral blood flow under the condition of increased ICP in real time and intuitively. With the advantages of high time resolution and high sensitivity, EIT provides a new idea for non-invasive bedside measurement of ICP
Enhanced γ-Glutamyltranspeptidase Imaging That Unravels the Glioma Recurrence in Post-radio/Chemotherapy Mixtures for Precise Pathology via Enzyme-Triggered Fluorescent Probe
Accurate pathological diagnosis of gliomas recurrence is crucial for the optimal management and prognosis prediction. The study here unravels that our newly developed γ-glutamyltranspeptidase (GGT) fluorescence probe (Figure 1A) imaging in twenty recurrent glioma tissues selectively recognizes the most malignant portion from treatment responsive tissues induced by radio/chemo-therapy (Figure 1B). The overexpression of GGT in recurrent gliomas and low level in radiation necrosis were validated by western blot analysis and immunohistochemistry. Furthermore, the ki-67 index evaluation demonstrated the significant increase of malignancy, aided by the GGT-responsive fluorescent probe to screen out the right specimen through fast enhanced imaging of enzyme activity. Importantly, our GGT-targeting probe can be used for accurate determination of pathologic evaluation of tumor malignancy, and eventually for guiding the following management in patients with recurrent gliomas
Comprehensive analysis of the aldehyde dehydrogenase gene family in Phaseolus vulgaris L. and their response to saline–alkali stress
BackgroundAldehyde dehydrogenase (ALDH) scavenges toxic aldehyde molecules by catalyzing the oxidation of aldehydes to carboxylic acids. Although ALDH gene family members in various plants have been extensively studied and were found to regulate plant response to abiotic stress, reports on ALDH genes in the common bean (Phaseolus vulgaris L.) are limited. In this study, we aimed to investigate the effects of neutral (NS) and basic alkaline (AS) stresses on growth, physiological and biochemical indices, and ALDH activity, ALDH gene expression of common bean. In addition, We used bioinformatics techniques to analyze the physical and chemical properties, phylogenetic relationships, gene replication, collinearity, cis-acting elements, gene structure, motifs, and protein structural characteristics of PvALDH family members.ResultsWe found that both NS and AS stresses weakened the photosynthetic performance of the leaves, induced oxidative stress, inhibited common bean growth, and enhanced the antioxidative system to scavenge reactive oxygen species. Furthermore, we our findings revealed that ALDH in the common bean actively responds to NS or AS stress by inducing the expression of PvALDH genes. In addition, using the established classification criteria and phylogenetic analysis, 27 PvALDHs were identified in the common bean genome, belonging to 10 ALDH families. The primary expansion mode of PvALDH genes was segmental duplication. Cis-acting elemental analysis showed that PvALDHs were associated with abiotic stress and phytohormonal responses. Gene expression analysis revealed that the PvALDH gene expression was tissue-specific. For instance, PvALDH3F1 and PvALDH3H1 were highly expressed in flower buds and flowers, respectively, whereas PvALDH3H2 and PvALDH2B4 were highly expressed in green mature pods and young pods, respectively. PvALDH22A1 and PvALDH11A2 were highly expressed in leaves and young trifoliates, respectively; PvALDH18B2 and PvALDH18B3 were highly expressed in stems and nodules, respectively; and PvALDH2C2 and PvALDH2C3 were highly expressed in the roots. PvALDHs expression in the roots responded positively to NS–AS stress, and PvALDH2C3, PvALDH5F1, and PvALDH10A1 were significantly (P < 0.05) upregulated in the roots.ConclusionThese results indicate that AS stress causes higher levels of oxidative damage than NS stress, resulting in weaker photosynthetic performance and more significant inhibition of common bean growth. The influence of PvALDHs potentially modulates abiotic stress response, particularly in the context of saline–alkali stress. These findings establish a basis for future research into the potential roles of ALDHs in the common bean
- …