31 research outputs found

    Comparison of Tetrel Bonds in Neutral and Protonated Complexes of PyridineTF3 and FuranTF3 (T = C, Si, and Ge) with NH3

    Get PDF
    Ab initio calculations have been performed for the complexes H+–PyTX3⋯NH3 and H+–furanTF3⋯NH3 (T = C, Si, and Ge; X = F and Cl) with focus on geometries, energies, orbital interactions, and electron densities to study the influence of protonation on the strength of tetrel bonding. The primary interaction mode between α/ÎČ-furanCF3/p-PyCF3 and NH3 changes from an F⋯H hydrogen bond to a C⋯N tetrel bond as a result of protonation. Importantly, the protonation has a prominent enhancing effect on the strength of tetrel bonding with an increase in binding energy from 14 to 30 kcal mol−1. The tetrel bonding becomes stronger in the order H+–p-PySiF3⋯NH3 \u3c H+–m-PySiF3⋯NH3 \u3c H+–o-PySiF3⋯NH3, showing a reverse trend from that of the neutral analogues. In addition, there is competition between the tetrel and hydrogen bonds in the protonated complexes, in which the hydrogen bond is favored in the complexes of H+–p-PyCF3 but the tetrel bond is preferred in the complexes of H+–p-PyTX3 (T = Si, Ge; X = F, Cl) and H+–o/m-PySiF3

    A Cyber-physical-social systems approach to the semantic segmentation of pulmonary embolism

    Get PDF
    Cyber-Physical-Social Systems (CPSS) epitomize the modern era’s intelligent connectivity. They integrate physical devices, computer networks, and social networks, forming an innovative paradigm for intelligent systems. Utilizing CPSS to enhance intelligence, automation, and remote services in healthcare represents a primary research focus. Pulmonary embolism, a prevalent condition resulting from the blockage of the pulmonary artery and its branches by emboli, leads to a spectrum of clinical syndromes marked by impaired pulmonary circulation and right heart dysfunction, contributing to sudden and unpredictable fatalities. Nevertheless, the diagnosis of pulmonary embolism remains challenging due to non-specific clinical presentations, constrained diagnostic capabilities, delayed diagnoses, insufficient physician knowledge, and suboptimal diagnostic techniques. Consequently, we introduce the innovative LSCU-Net architecture within the CPSS framework, designed to develop an automated segmentation and intelligent assessment system for pulmonary embolism, facilitating its automated and intelligent detection. The experimental findings demonstrate that the model accurately segments pulmonary embolism, evidenced by a Jaccard index of 0.6958, a Dice coefficient of 0.8193, a Mean Pixel Accuracy (mPA) of 0.8519, and an accuracy of 0.9993. Empirical studies reveal that our proposed model substantially surpasses existing models in performance. Consequently, this model can aid physicians in the diagnosis of pulmonary embolism during clinical practice. The established pulmonary embolism automatic segmentation and assessment system also showcases the application successes of CPSS in intelligent remote healthcare. The system’s development and deployment not only streamline physicians’ diagnostic processes but also elevate public health standards and advance CPSS research within the medical domain

    Finite element implementation of a multi-scale dynamic piezomagnetic continuum model

    Get PDF
    A gradient-enriched dynamic piezomagnetic model is presented. The gradient enrichment introduces a number of microstructural terms in the model that allow the description of dispersive wave propagation. A novel derivation based on homogenisation principles is shown to lead to a multi-scale formulation in which the micro-scale displacements and magnetic potential are included alongside the macro-scale displacements and magnetic potential. The multi-scale formulation of the model has the significant advantage that all higher-order terms are rewritten as second-order spatial derivatives. As a consequence, a standard C^0-continuous finite element discretisation can be used. Details of the finite element implementation are given. A series of one and two-dimensional examples shows the effectiveness of the model to describe dispersive wave propagation and remove singularities in a coupled elasto-magnetic context

    Discussion and Research of Photovoltaic MPPT Methods

    No full text

    2012 Symposium of the International Chinese Statistical Association

    No full text

    Exploration and Optimisation of High-Salt Wastewater Defluorination Process

    No full text
    The typical lime precipitation method is used to treat high-concentration fluorine-containing wastewater. In this way, the fluorine in the wastewater can be removed in the form of CaF2. Thus, this method has a good fluoride removal effect. In this study, calcium hydroxide was used to adjust the pH and achieve a significant fluoride removal effect at the same time. The removal rate of fluoride ion decreases gradually with the increase in the concentration of sulphate in the raw water. When the synergistic defluorination cannot meet the requirements of water production, adding a step of aluminium salt flocculation and precipitation can further reduce the fluoride ion concentration. According to the feasibility of the actual project, this study improves the lime coagulation precipitation defluorination process on this basis, and the combined process is synchronised. In the process optimisation, barium chloride is added to remove the influence of sulphate radicals in the water, and then, the pH is adjusted to 5–6. The fluoride ion concentration in high-salt wastewater can be reduced from 446.6 mg/L to 35.4 mg/L by defluorination after pre-treatment whose removal rate was 92.1%. The combined process synchronously removes fluorine and purifies the water quality to a certain extent. Indicators such as COD, total phosphorus, ammonia nitrogen, and chloride ions in wastewater are reduced, and the removal rate is increased by 35.5% under the same conditions. This scheme improves the wastewater treatment effect without increasing the existing treatment equipment. Thus, it achieves a better defluorination effect and reduces the dosage of chemicals as much as possible, which is conducive to lowering the discharge of sludge after treatment

    Advanced Treatment of Phosphorus Pesticide Wastewater Using an Integrated Process of Coagulation and Ozone Catalytic Oxidation

    No full text
    Conventional pretreatment and secondary biochemical treatment are ineffective methods for removing phosphorus from phosphorus-containing pesticide wastewater. In this study, coagulation-coupled ozone catalytic oxidation was used to treat secondary biochemical tailwater of phosphorus-containing pesticide wastewater thoroughly. The effects of the coagulant type, coagulant dosage, coagulant concentration, wastewater pH, stirring rate, and stirring time on the removal efficiency of chemical oxygen demand (COD), total phosphorus (TP), and chromaticity were investigated during coagulation. When the dosage of the coagulant PAFS was equal to 100 mg/L, the concentration of the coagulant, pH, stirring rate, and stirring time were 5 wt%, 8, 100 rpm, and 5 min, respectively, and the removal rates of COD, TP, and chroma in wastewater reached the maximum value of 17.6%, 86.8%, and 50.0%, respectively. Effluent after coagulation was treated via ozone catalytic oxidation. When the respective ozone dosage, H2O2 dosage, catalyst dosage, and reaction time were 120 mg/L, 0.1 vt‰, 10 wt%, and 90 min, residual COD and chromaticity of the final effluent were 10.3 mg/L and 8, respectively. The coagulation-coupled ozone catalytic oxidation process has good application prospects in the treatment of secondary biochemical tailwater from phosphorus-containing pesticide wastewater

    Pretreatment Hydrolysis Acidification/Two-Stage AO Combination Process to Treat High-Concentration Resin Production Wastewater

    No full text
    The rapid development of the resin industry has led to a large amount of high-concentration resin production wastewater, which has created serious water pollution problems while limiting the development of related enterprises. In this study, a combined pretreatment hydrolysis acidification/two-stage anaerobic oxic (AO) process for high-concentration resin production wastewater was constructed, and the effect of operation time on the treatment efficiency of the hydrolysis acidification and the two-stage AO unit was investigated using chemical oxygen demand (COD), total nitrogen (TN), and NH3-H (ammonia nitrogen) as indicators. The effect of operation time on the treatment efficiency of the hydrolysis acidification and the two-stage AO unit was investigated. Results showed that the pretreatment of “alkaline digestion + ozone oxidation” could effectively remove volatile phenols and phenolic organic pollutants from the wastewater. The average removal rates of COD, TN, and NH3-H (ammonia nitrogen) of resin production were 91.96%, 85.35%, and 85.67%, respectively. The average concentrations of final biochemical effluent were 404.7, 21.4, and 11.4 mg/L, respectively

    Pretreatment Hydrolysis Acidification/Two-Stage AO Combination Process to Treat High-Concentration Resin Production Wastewater

    No full text
    The rapid development of the resin industry has led to a large amount of high-concentration resin production wastewater, which has created serious water pollution problems while limiting the development of related enterprises. In this study, a combined pretreatment hydrolysis acidification/two-stage anaerobic oxic (AO) process for high-concentration resin production wastewater was constructed, and the effect of operation time on the treatment efficiency of the hydrolysis acidification and the two-stage AO unit was investigated using chemical oxygen demand (COD), total nitrogen (TN), and NH3-H (ammonia nitrogen) as indicators. The effect of operation time on the treatment efficiency of the hydrolysis acidification and the two-stage AO unit was investigated. Results showed that the pretreatment of “alkaline digestion + ozone oxidation” could effectively remove volatile phenols and phenolic organic pollutants from the wastewater. The average removal rates of COD, TN, and NH3-H (ammonia nitrogen) of resin production were 91.96%, 85.35%, and 85.67%, respectively. The average concentrations of final biochemical effluent were 404.7, 21.4, and 11.4 mg/L, respectively
    corecore