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Cyber-Physical-Social Systems (CPSS) epitomize the modern era’s intelligent
connectivity. They integrate physical devices, computer networks, and social
networks, forming an innovative paradigm for intelligent systems. Utilizing CPSS
to enhance intelligence, automation, and remote services in healthcare
represents a primary research focus. Pulmonary embolism, a prevalent
condition resulting from the blockage of the pulmonary artery and its
branches by emboli, leads to a spectrum of clinical syndromes marked by
impaired pulmonary circulation and right heart dysfunction, contributing to
sudden and unpredictable fatalities. Nevertheless, the diagnosis of pulmonary
embolism remains challenging due to non-specific clinical presentations,
constrained diagnostic capabilities, delayed diagnoses, insufficient physician
knowledge, and suboptimal diagnostic techniques. Consequently, we
introduce the innovative LSCU-Net architecture within the CPSS framework,
designed to develop an automated segmentation and intelligent assessment
system for pulmonary embolism, facilitating its automated and intelligent
detection. The experimental findings demonstrate that the model accurately
segments pulmonary embolism, evidenced by a Jaccard index of 0.6958, a Dice
coefficient of 0.8193, a Mean Pixel Accuracy (mPA) of 0.8519, and an accuracy of
0.9993. Empirical studies reveal that our proposed model substantially surpasses
existing models in performance. Consequently, this model can aid physicians in
the diagnosis of pulmonary embolism during clinical practice. The established
pulmonary embolism automatic segmentation and assessment system also
showcases the application successes of CPSS in intelligent remote healthcare.
The system’s development and deployment not only streamline physicians’
diagnostic processes but also elevate public health standards and advance
CPSS research within the medical domain.
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1 Introduction

In recent years, the paradigm of Cyber-Physical Social Systems
(CPSS [1]) has emerged. As an interdisciplinary field, CPSS
integrates theories and technologies from computer science,
physics, and social sciences, with a focus on exploring the
interactions among sensors, physical systems, and social
networks, and is dedicated to intelligent decision-making and
optimization. Particularly in the field of medical image
processing, the adoption of CPSS offers new opportunities to
surmount the challenges of medical image data processing.
Investigating the utilization of CPSS to achieve remote,
automated, and intelligent medical treatment is a key area of
interest. The medical treatment field is rapidly evolving from a
traditional centralized treatment approach by hospitals and experts
to a patient-centric distributed treatment model.

CPSS powers smart personal healthcare. In CPSS, the
integration of physical devices, social networks, and networked
systems enables the real-time monitoring of patient data
(including blood pressure, vital signs, and activity monitoring)
and facilitates the conversion of these data from the physical to
the digital realm. This process not only endows devices with the
ability to compute, coordinate remotely, and operate autonomously,
but also advances medical treatment towards greater remoteness,
automation, and intelligence. In this context, H et al. [2] introduced
a doctor recommendation algorithm based on the doctor’s
diagnostic and treatment efficacy and the patient’s personal
preferences in 2014. In 2018, Q et al. [3] focused on e-medical
services leveraging social networks and proposed an e-medical
system model that utilizes the green CPSS framework to detect
and predict disease transmission.

This study aims to conduct an in-depth analysis of CPSS
applications within the medical field, with a particular focus on
the efficacy of CPSS in supporting pulmonary embolism patients
through remote, real-time, and intelligent treatment modalities.

Pulmonary embolism (PE), a prevalent medical condition, is
characterized by a spectrum of diseases or clinical syndromes
wherein endogenous or exogenous emboli obstruct the
pulmonary artery and its branches, leading to impaired
pulmonary circulation and right ventricular dysfunction [4].
Pulmonary embolism represents a critical health threat and is a
primary cause of unexpected sudden death [5, 6]. Extensive data
indicate that pulmonary embolism has a high global incidence.
Annually, the United States sees between 650,000 and 700,000 new
cases of pulmonary embolism, with a mortality rate surpassed only
by cancer and coronary heart disease, making it the third leading
cause of death [7]. In France, the incidence of pulmonary embolism
rivals that of myocardial infarction fatalities, with over 100,000 new
cases reported annually [6]. The resulting disability and morbidity
from PE are significant drivers of medical expenditures and bear
socioeconomic implications [8–14].

The diagnosis of pulmonary embolism remains challenging
owing to the non-specific clinical manifestations of the condition,
constrained diagnostic resources, delays in seeking medical
attention, and the lack of physician awareness coupled with
inappropriate diagnostic methods. Pulmonary embolism clinically
presents as respiratory dysfunction. Numerous conditions can cause
this symptom, making it challenging for physicians to directly

associate this clinical feature with pulmonary embolism.
Consequently, the majority of patients with pulmonary embolism
do not receive an accurate diagnosis in their lifetime, with
misdiagnosis rates reaching as high as 70%. An American study
examining the correlation between the timing of pulmonary
embolism diagnosis and mortality revealed that each hour of
diagnostic advancement reduced the patient’s mortality risk
by 5% [15].

Prior to the extensive adoption of artificial intelligence (AI)
technology, especially deep learning, in medical image analysis,
medical image segmentation was heavily dependent on
traditional image processing techniques. Traditional image
segmentation methods have played a pivotal role in analyzing
medical images, including X-rays, MRIs, CT scans, and
ultrasound images. These methods typically entail manual or
semi-automatic processes and rely on a variety of mathematical
and algorithmic approaches to identify and delineate the boundaries
of distinct structures within the images. Traditional medical image
segmentation methods can be broadly classified into several
categories: 1) Threshold-based methods [16], which classify pixels
within the image as target or background by predefining a
characteristic feature. 2) Region-based methods [17], which
extract the target area by delineating a sub-region manually and
subsequently merging adjacent pixels with similar attributes. 3)
Edge-based segmentation methods [18], which achieve
segmentation by identifying pixels where edges undergo
significant changes at the juncture between the target and
background areas, effectively delineating the boundaries. 4) Atlas-
based segmentation methods [19], through the incorporation of
shape information and the utilization of prior knowledge, these
methods can yield improved segmentation outcomes even for
medical images with indistinct boundaries and substantial noise.

In practical applications, the unique shape and contour of
pulmonary embolism lesions in CTPA images make it so that
traditional image segmentation methods often fail to achieve
optimal outcomes in segmenting pulmonary embolism.

To address the above challenges, researchers are working to
develop methods that utilize Cyber-Physical-Social Systems (CPSS)
to enhance medical diagnosis. In 2014, researchers such as Long [20]
introduced fully convolutional neural network (FCN) by enhancing
the traditional convolutional neural network architecture. FCN
abandons the fully connected layer in traditional convolutional
neural networks and instead uses deconvolution layers. This
change brings significant advantages - the network can handle
image inputs of any size and is no longer limited to a fixed input
size. However, this approach is not without drawbacks. The network
needs to use basic upsampling technology at the back end of the
processing process to match the size of the original image. This step
often leads to the loss of a large amount of spatial information, thus
limiting the accuracy of the network in image segmentation tasks,
resulting in segmentation results. Accuracy is compromised.

Then in 2015, Ronneberger et al. [21] proposed the U-Net
architecture based on FCN, aiming to more effectively utilize the
rich contextual information in images. U-Net further optimizes the
performance of fully convolutional networks through carefully
designed downsampling and upsampling operations, and
introduces four key components: encoder, decoder, bottleneck
layer, and skip connection. The proposal of U-Net is widely
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regarded as a milestone in the field of encoder-decoder network
structure, especially in the field of medical image segmentation.
U-Net not only demonstrates excellent performance, but also
promotes rapid progress in this field.

Owing to U-Net’s superior performance in medical image
segmentation, we aimed to enhance U-Net accordingly to better
suit the pulmonary embolism segmentation task. In comparison to
traditional medical image segmentation methods, the automatic
segmentation of pulmonary embolism via deep learning presents
multiple challenges. The pulmonary embolism region is small in
comparison to the lung area, and the marked imbalance between
positive and negative samples can impair the model’s predictive
accuracy, potentially leading to a complete loss of predictive
capability [22]. Therefore, we have incorporated an attention
mechanism into the U-Net architecture, thereby directing the
model’s focus more towards the pulmonary embolism region.
Furthermore, considering the challenge of accessing and the
limited information in medical datasets, we have endeavored to
integrate the Bi-LSTM architecture into the U-Net framework to
capture the inter-slice information pertinent to pulmonary
embolism. Additionally, to tackle the substantial imbalance of
positive and negative samples in the pulmonary embolism
dataset, we employ a hybrid loss function combining Cross-
Entropy Loss (CELoss) and Tversky Loss (TLoss) during the
neural network’s training.

This article’s principal contributions are as follows:

(1) An enhanced LSCU-Net, derived from the U-Net
architecture, was developed. This framework integrates
contextual information to automatically and accurately
identify and segment pulmonary embolism, thereby aiding
medical professionals and reducing the rate of misdiagnosis,
and actualizing the application of CPSS in medical image
segmentation.

(2) During model training, a hybrid loss function combining
CELoss and FTLoss addresses the challenges of small
pulmonary embsolism targets and disproportionate scales
between pulmonary embolism and background in
segmentation tasks.

(3) Experimental results demonstrate that our proposed
method achieves the following metrics on the test set: a
Jaccard index (JAC) of 0.6958, a Dice similarity coefficient
(DSC) of 0.8206, a Mean Pixel Accuracy (mPA) of 0.8519,
and an accuracy of 0.9993, thereby substantiating the
method’s feasibility.

2 Methods

2.1 LSCU-net

The U-Net architecture is extensively employed in medical
image segmentation tasks due to its advantageous compact model
parameterization, minimal data requirements, and rapid training
capabilities. As depicted in Figure 1, the U-Net model is an
evolution of the Fully Convolutional Network (FCN). The
network’s structure resembles the letter ‘U᾽, which is the
origin of its nomenclature. The U-Net framework primarily
consists of four key components: the encoder, decoder, skip
connections, and a bottleneck layer. The encoder module
comprises convolutional and pooling layers, serving primarily
to downsample and extract features. The decoder module,
consisting of convolutional and upsampling layers, is chiefly
responsible for localizing the target and reconstructing the
image dimensions. Skip connections merge the encoder and
decoder information along the channel dimension, facilitating
the integration of contextual data.

The enhanced architecture of our neural network model, termed
Long Short-Term Memory and Convolutional Block Attention
Module U-Net (LSCU-Net), is depicted in Figure 2. This model
is a modification of the benchmark U-Net architecture. In
comparison to the standard U-Net model, the principal
enhancements of the LSCU-Net include:

(1) Integration of the Convolutional Block Attention Module
(CBAM) into the encoder module to refine the neural
network’s learning strategy, thereby focusing more acutely
on pertinent areas within the channel and spatial dimensions.

FIGURE 1
Schematic diagram of U-net model.
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The attention mechanism [23] constitutes a significant concept
within the domain of deep learning. It emulates the human cognitive
process of attention and concentration during information
processing. This mechanism enables the neural network model to
focus more intensively on pertinent information throughout the
training phase, thereby enhancing the model’s capacity for
representation learning and feature selection with respect
to input data.

The Convolutional Block Attention Module (CBAM) [24],
proposed by Sanghyun et al. in 2018, is an attention mechanism
module within the realm of deep learning. Figure 3 illustrates its

structure. CBAM’s central concept involves the simultaneous
introduction of channel and spatial attention sub-modules,
enabling the neural network model to concurrently attend to
both channel and spatial information.

Figure 4A illustrates how the channel attention module captures
the interdependencies among various channels. This module
computes the significance of each channel by processing the
input features, subsequently assigning weights to minimize
extraneous information across channels, which enhances the
feature extraction quality. The computation is described by the
following formula:

FIGURE 2
Schematic diagram of LSCU-net model.

FIGURE 3
CBAM.
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Fs � σ W1 W0 FC
avg( )( ) +W1 W0 F C

max( )( )( )

Where σ is the activation function sigmoid,W1、W2 represents
two different convolution operations, and FC

avg、 F C
max represents

average pooling and maximum pooling.
Figure 4B illustrates that the spatial attention module captures

dependencies across various locations within the feature
map. Utilizing channel attention as a basis, the spatial attention
module computes the significance weights for each position,
subsequently applying these weights to the feature map to
attenuate information from irrelevant locations. The computation
is described by the following formula:

Fs � σ f 7×7 FS
avg ; F

S
max[ ]( ))

Where σ is the activation function sigmoid, f 7×7 represents a
convolution operation with a convolution kernel size of 7 × 7, and
FS
avg、 F S

max represents average pooling and maximum pooling.

2) Incorporate a Bi-LSTM into the bottleneck layer to capture the
inter-slice sequential information within the pulmonary
embolism dataset.

Given that medical datasets are challenging to obtain, often
contain sparse labeled samples, and limited information, the
extraction of maximal information from the dataset for training
purposes remains a significant challenge in current neural network
research. Considering a dataset of pulmonary embolism obtained
through CTPA imaging, conventional convolutional neural
networks (CNNs) are limited to extracting intra-slice information
from the dataset, failing to capture inter-slice correlations.

In 2018, Chen et al. applied Bi-directional Long Short-Term
Memory (Bi-LSTM) [25] to Chinese word segmentation. Figures 5,
6 depict the architectures of Bi-LSTM and LSTM, respectively. This

model represents an enhancement over the traditional Long Short-
TermMemory (LSTM) architecture [26]. It integrates both forward and
reverse LSTM networks, enabling the processing of input sequences
progressively at each time step. This allows for the acquisition of
information in both forward and reverse temporal directions.

2.2 Dataset

Our study utilized a single dataset: Pulmonary Embolism
Dataset 1 (PEA1). This dataset was developed by the Sichuan
Provincial People’s Hospital.

The PEA1 dataset comprises 15−ΔΔCT scans and 1,210 sliced JPG
images. The original CT data, stored in DICOM format, undergoes
slicing to produce JPG images. Typically, each CT scan encompasses
50–200 axial slices, with dimensions of 512 × 512 pixels for each slice.

The dataset was annotated by professional doctors at the
Sichuan Provincial People’s Hospital using the LABEL ME
software, thus rendering the PEA1 dataset suitable for training
and evaluating the segmentation capabilities of our neural
network. The dataset was partitioned into two subsets: a training
set and a validation set, comprising 1,080 images (90%, 13 cases) and
130 images (10%, 2 cases), respectively.

2.3 Evaluation indicators

The evaluation index is derived from the confusion matrix. The
confusion matrix typically comprises four elements: true positives (TP),
false negatives (FN), false positives (FP), and true negatives (TN). Each
columnof the confusionmatrix corresponds to a predicted category, with
the sum of the column’s entries denoting the number of predictions for
that category; each row pertains to the actual category, and the sumof the
row’s entries reflects the total instances within that category.

FIGURE 4
SA and CA.
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Table 1 presents the evaluation metrics applied and the
corresponding calculation methodologies.

2.4 Loss function

Semantic segmentation of pulmonary embolism presents
challenges including severe category imbalance and the difficulty
of detecting small-scale targets. Figure 7 illustrates a real CTPA
image of a pulmonary embolism patient on the left, and a manually
segmented pulmonary embolism mask image by a medical

professional on the right. The red area represents the pulmonary
embolism lesion, while the black areas denote the background.

Cross-entropy [27] is widely used as a loss function in
classification tasks, defined as the measure of disparity between
probability distributions for a particular random variable or set
of events.

The binary cross-entropy loss function is delineated as:

LossBCE y, y′( ) � − ylog y′( ) + 1 − y( )log 1 − y′( )( )

Here, y′ is the predicted value by the prediction model.

FIGURE 5
Bi-LSTM structure diagram.

FIGURE 6
LSTM structure diagram.
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The Focal Tversky Loss [28] combines Focal Loss and Tversky
Loss, prioritizing challenging examples by diminishing the influence
of simple, common elements, particularly in small regions of interest
(ROIs), through the application of a specific coefficient as detailed
subsequently:

FTLoss � ∑
C

1 − Tlc( )γ

This study is the first to integrate BCE (Binary Cross-
Entropy) loss and FT (Focal Tversky) loss, aiming to enhance
the performance of the neural network model while addressing
the challenges of significant category imbalance and small target
segmentation in the pulmonary embolism dataset.

LOSS � LossBCE + FTLoss

3 Results and discussion

In the course of the study, we performed a series of control
experiments, which included the evaluation of established neural
network architectures, including U-Net, U-Net++, Attention U-Net,
TransU-Net, and the integration of CBAM attention modules into
the U-Net framework, as well as the incorporation of Bi-LSTM

modules. Additionally, we assessed the employment of a hybrid loss
function to address class imbalance and granular target
segmentation in the training phase. For each experimental series,
the training set was employed to retrain the model, subsequently
model segmentation performance on the test set was assessed using
the Jaccard index, Dice coefficient, Mean Pixel Accuracy (mPA),
and accuracy.

As depicted in Figure 8A, is the original CT slice image of the
patient, Figure 8B is the mask image manually segmented by the
doctor, Figure 8C is the segmentation image obtained using the
original U-Net model, and Figure 8D is the segmentation obtained
using the classic model U-Net++ Image, Figure 8E is a segmented
image obtained using the classic model Attention U-Net, Figure 8F
is a segmented image obtained using the classic model TransU-Net
model, Figure 8G is obtained by ourmethod after adding CBAM and
Bi-LSTM modules and using a hybrid loss function
segmented image.

As Table 2 demonstrates, the integration of the CBAM attention
mechanism into the U-Net’s backbone, coupled with the
replacement of the bottleneck layer by a Bi-LSTM and the
adoption of a hybrid loss function, yields the most superior
outcomes. When applied to the test set, it yielded a Jaccard index
of 0.6958, a Dice score of 0.8193, anMPA of 0.8519, and an accuracy
of 0.9993.

FIGURE 7
Original images and ground truths.

TABLE 1 Evaluation indicators.

Evaluation Definition Note

Jac Jac = (A¡ÉB)/(A¡ÈB) Jaccard index

DSC DSC = 2*(A¡ÉB)/(|A|+|B|) Dice similarity coefficient

Accuracy Accuracy = (TP + TN)/(TP + TN + FN + FP) Proportion of samples that predict correctly

mPA@.x mPA@.x = sum(P(i))/N Mean pixel accuracy
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Upon implementing a hybrid loss function tailored for small
object segmentation and addressing class imbalance to train the
model, the Jaccard index (Jac) exhibited an increase from
0.6352 to 0.6419, the Dice Score improved from 0.7769 to
0.7819, the Mean Pixel Accuracy (MPA) rose from 0.6785 to
0.7060, and the Accuracy enhanced from 0.9950 to 0.9986. This
resulted in an overall performance enhancement of the model by
approximately 0.6%, demonstrating that the hybrid loss
function effectively guides the model in addressing the
significant class imbalance issue inherent in the dataset, and
in improving the model’s performance in segmenting
small targets.

Upon integrating the Bi-LSTM module into the original
U-Net architecture, the Jaccard index improved from
0.6419 to 0.6782, the Dice coefficient from 0.7819 to 0.8082,
the Mean Pixel Accuracy from 0.7060 to 0.7767, and the overall
accuracy from 0.9986 to 0.9988. This enhancement bolstered the
model’s overall performance by approximately 3.6%,
demonstrating that replacing the bottleneck layer with the
Bi-LSTM module enables the U-Net model to more

effectively learn inter-sequential information within the
pulmonary embolism dataset, thereby enhancing its feature
segmentation capabilities.

Upon integrating the Convolutional Block Attention Module
(CBAM) into the U-Net architecture, which already includes the Bi-
LSTM module, the Jaccard Index improved from 0.6782 to 0.6958,
Dice score from 0.8082 to 0.8193, Mean Pixel Accuracy (MPA) from
0.7767 to 0.8519, and accuracy from 0.9988 to 0.9993. This
enhancement resulted in an overall performance improvement of
approximately 1.8%, demonstrating that the incorporation of the
CBAMmodule into the U-Net’s backbone enables the U-Net model
to focus more on critical regions within pulmonary embolism
images throughout the training process, thereby enhancing the
model’s performance and feature learning capabilities.

4 Conclusion

This study integrates computer networking, Internet of Things
(IoT), and social networking technologies and utilizes CPSS

FIGURE 8
Contrast test.

TABLE 2 The results.

Method Jac Dice score Mpa Accuracy

U-net trained by CEloss 0.6352 0.7769 0.6785 0.995

U-net++ trained by CEloss 0.673 0.8045 0.7915 0.9987

Attention_U-net trained by CEloss 0.6524 0.7896 0.7488 0.9988

Trans U-net trained by CEloss 0.6873 0.8147 0.8005 0.9988

U-net trained by BCE Loss and FT loss 0.6419 0.7819 0.706 0.9986

U-net with Bi-LSTM trained by BCE Loss and FT loss 0.6782 0.8082 0.7767 0.9988

LSCU-Net trained by BCE Loss and FT loss 0.6958 0.8193 0.8519 0.9993
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technology in the medical management of pulmonary embolism
patients. We have developed an innovative LSCU-Net model and
established a specialized automated segmentation system for
pulmonary embolism. The key contributions are summarized
as follows:

(1) We integrate the CBAM attention mechanism into the U-net
model’s backbone to refine the learning strategy, enhancing
focus on salient features in both channel and spatial
dimensions.

(2) We employ a Bi-LSTM module to supplant the bottleneck
layer, enabling the extraction of inter-slice sequential
information from the pulmonary embolism dataset.

(3) Throughout the training phase, we utilize a hybrid loss function
that merges BCEloss with Focal Tversky Loss, significantly
enhancing the model’s ability to extract features from highly
imbalanced categories and diminutive target datasets.

In future research, we will concentrate our efforts on three
primary areas. First, we aim to explore the latest advancements in
research on Cyber-Physical-Social Systems (CPSS), which seeks to
foster deeper integration among computer networks, the Internet of
Things, and social networks, and apply these insights to pulmonary
embolism treatment research, with the expectation of achieving
significant breakthroughs. Second, considering the limitations of
existing pulmonary embolism datasets, particularly in terms of case
numbers and significant individual variability, we aim to construct
an extensive, detailed, and comprehensive dataset to address these
challenges. Finally, we are dedicated to developing a broad spectrum
of applications and advanced architectures for medical image
segmentation models, while investigating sophisticated and
efficient search algorithms, aiming to enhance the models’
learning capabilities, and then to promote the integrated
application of the Cyber-Physical-Social Systems in the field of
medical treatment.
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