194 research outputs found

    Controlling the polarization of nitrogen ion lasing

    Full text link
    Air lasing provides a promising technique to remotely produce coherent radiation in the atmosphere and attracts continuous attention. However, the polarization properties of N2+ lasing with seeding has not been understood since it was discovered ten years ago, in which the behaviors appear disordered and confusing. Here, we performed an experimental and theoretical investigation on the polarization properties of N2+ lasing and successfully revealed its underlying physical mechanism. We found that the optical gain is anisotropic owing to the permanent alignment of N2+ induced by the preferential ionization of the pump light. As a result, the polarization of N2+ lasing tends to align with that of the pump light after amplification, which becomes more pronounced with increasing amplification factor. Based on the permanent alignment of N2+, we built a theoretical model that analytically interpreted and numerically reproduced the experimental observations, which points out the key factors for controlling the polarization of N2+ lasing.Comment: 12 pages, 4 figure

    Prediction of natural fracture distribution characteristics in tight oil and gas reservoirs based on paleotectonic stress field

    Get PDF
    The production of fractured oil and gas reservoirs in the world accounts for more than half of total oil and gas production and is one of the important fields for increasing oil and gas storage and production in the 21st century. The key to characterizing fractured oil and gas reservoirs is the distribution pattern of natural fractures. The distribution of natural fractures is dominated by structural deformations and fractures. Therefore, analytical and structural simulations of the tectonic stress field in geological structural systems play a crucial role in obtaining fracture distribution patterns. In this paper we have developed a description of the distribution of natural fractures based on finite element numerical simulations of the paleotectonic stress field. The study focused on the Chang 7 and Huangjialing Chang 8 reservoirs in the underground Siwan region of the Ordos Basin in China. First, an experimental assessment of the rock mechanics of the reservoir was completed, and the values of the paleotectonic stresses obtained from the tests were used as inversion criteria for the stress field simulations. Based on the geology, a refined geological model has been developed to study the structure of the Chang 7 and Chang 8 oil reservoirs in the block. The simulated paleotectonic stress fields for natural fractures in the Indosinian period are as follows: maximum principal stress of 94.67 MPa, minimum principal stress of 21.58 MPa, and vertical stress of 28.07 MPa. The direction of maximum principal stress remains essentially in the NE-SW direction, with the largest differential stress occurring in the Chang 8 oil layer group in Huangjialing, while the differential stress is relatively uniform in the Chang 7 oil layer group in Xiasiwan. It predicts the relative density of natural fractures in the Chang 7 and Chang 8 reservoirs, and finds high-to-low plane heterogeneity in the Huangjialing Chang 8 reservoir group and the Xiasiwan Chang 7 reservoir group, respectively. The paper reveals the pattern of development of reservoir fractures in both vertical and horizontal directions, providing an important geological basis for efficient and rational exploitation of oil and gas resources in the study area and improving oil recovery

    Optimization of volume fracturing technology for shallow bow horizontal well in a tight sandstone oil reservoir

    Get PDF
    The physical property of Chang 6 reservoir in Yanchang oilfield is poor, and the heterogeneity is strong. Multistage fracturing of horizontal wells is easy to form only one large horizontal fracture, but it is difficult to control the fracture height and length. The new mining method of “bow horizontal well + multistage horizontal joint” can effectively increase the multistage horizontal joint’s spatial position, which improves the drainage area and stimulation efficiency of oil wells. Due to the reservoir’s low permeability and strong heterogeneity, the single well mode of “bow horizontal well + multistage horizontal fracture” cannot effectively produce Chang 6 reservoir. To improve the production degree of the g 6 reservoir, the fracture model is established using equivalent conductivity and the multigrid method. The pressure response functions of horizontal wells and volume fracturing horizontal wells are established by using the source function, and the relationship between reservoir permeability and starting pressure gradient in the block is calculated. On this basis, the reservoir productivity equation of the block is established, which provides a basis for optimizing the fracturing design parameters of horizontal wells. It is proposed that the flow unit should be considered in the design of fracturing parameters of horizontal fractures, the number of fractures should comprehensively consider whether the fractures can make each flow unit be used, and have large controlled reserves, and the scale of fracturing should comprehensively consider the output and cost. The fracture network model is established by using equivalent conductivity and multi-gridthod, and the volume fracturing design parameters of horizontal wells are optimized, considering the seepage characteristics of the flow unit. The fracturing design parameters of the horizontal section are further defined, which provides a theoretical basis for the efficient development of shallow tight reservoirs

    A flexible dual-mode pressure sensor with ultra-high sensitivity based on BTO@MWCNTs core-shell nanofibers

    Get PDF
    Wearable flexible sensors have developed rapidly in recent years because of their improved capacity to detect human motion in wide-ranging situations. In order to meet the requirements of flexibility and low detection limits, a new pressure sensor was fabricated based on electrospun barium titanate/multi-wall carbon nanotubes (BTO@MWCNTs) core-shell nanofibers coated with styrene-ethylene-butene-styrene block copolymer (SEBS). The sensor material (BTO@MWCNTs/SEBS) had a SEBS to BTO/MWCNTs mass ratio of 20:1 and exhibited an excellent piezoelectricity over a wide range of workable pressures from 1 to 50 kPa, higher output current of 56.37 nA and a superior piezoresistivity over a broad working range of 20 to 110 kPa in compression. The sensor also exhibited good durability and repeatability under different pressures and under long-term cyclic loading. These properties make the composite ideal for applications requiring monitoring subtle pressure changes (exhalation, pulse rate) and finger movements. The pressure sensor developed based on BTO@MWCNTs core-shell nanofibers has demonstrated great potential to be assembled into intelligent wearable devices

    Atomically resolved electrically active intragrain interfaces in perovskite semiconductors

    Get PDF
    Deciphering the atomic and electronic structures of interfaces is key to developing state-of-the-art perovskite semiconductors. However, conventional characterization techniques have limited previous studies mainly to grain-boundary interfaces, whereas the intragrain-interface microstructures and their electronic properties have been much less revealed. Herein using scanning transmission electron microscopy, we resolved the atomic-scale structural information on three prototypical intragrain interfaces, unraveling intriguing features clearly different from those from previous observations based on standalone films or nanomaterial samples. These intragrain interfaces include composition boundaries formed by heterogeneous ion distribution, stacking faults resulted from wrongly stacked crystal planes, and symmetrical twinning boundaries. The atomic-scale imaging of these intragrain interfaces enables us to build unequivocal models for the ab initio calculation of electronic properties. Our results suggest that these structure interfaces are generally electronically benign, whereas their dynamic interaction with point defects can still evoke detrimental effects. This work paves the way toward a more complete fundamental understanding of the microscopic structure–property–performance relationship in metal halide perovskites

    NICE 2023 Zero-shot Image Captioning Challenge

    Full text link
    In this report, we introduce NICE project\footnote{\url{https://nice.lgresearch.ai/}} and share the results and outcomes of NICE challenge 2023. This project is designed to challenge the computer vision community to develop robust image captioning models that advance the state-of-the-art both in terms of accuracy and fairness. Through the challenge, the image captioning models were tested using a new evaluation dataset that includes a large variety of visual concepts from many domains. There was no specific training data provided for the challenge, and therefore the challenge entries were required to adapt to new types of image descriptions that had not been seen during training. This report includes information on the newly proposed NICE dataset, evaluation methods, challenge results, and technical details of top-ranking entries. We expect that the outcomes of the challenge will contribute to the improvement of AI models on various vision-language tasks.Comment: Tech report, project page https://nice.lgresearch.ai

    Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proper patterning of the follicle cell epithelium over the egg chamber is essential for the <it>Drosophila </it>egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that <it>lethal(2)giant larvae </it>(<it>lgl</it>), a <it>Drosophila </it>tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC) fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, <it>scribble </it>(<it>scrib</it>) and <it>discs large </it>(<it>dlg</it>), in the epithelial patterning.</p> <p>Results</p> <p>We found that removal of <it>scrib </it>or <it>dlg </it>function from the follicle cells at posterior terminal of the egg chamber causes a complete loss of the PFC fate. Aberrant specification and differentiation of the PFCs in the mosaic clones can be ascribed to defects in coordinated activation of the EGFR, JAK and Notch signaling pathways in the multilayered cells. Meanwhile, the clonal analysis revealed that loss-of-function mutations in <it>scrib/dlg </it>at the anterior domains result in a partially penetrant phenotype of defective induction of the stretched and centripetal cell fate, whereas specification of the border cell fate can still occur in the most anterior region of the mutant clones. Further, we showed that <it>scrib </it>genetically interacts with <it>dlg </it>in regulating posterior patterning of the epithelium.</p> <p>Conclusion</p> <p>In this study we provide evidence that <it>scrib </it>and <it>dlg </it>function differentially in anterior and posterior patterning of the follicular epithelium at oogenesis. Further genetic analysis indicates that <it>scrib </it>and <it>dlg </it>act in a common pathway to regulate PFC fate induction. This study may open another window for elucidating role of <it>scrib/dlg </it>in controlling epithelial polarity and cell proliferation during development.</p
    corecore