101 research outputs found

    Graph theoretical analysis of functional network for comprehension of sign language

    Get PDF
    This work was supported by grants from the National Natural Science Foundation of China (NSFC: 31571158, 31170969) and National Key Basic Research Program of China (2014CB846102), and a grant from the National Institutes of Health (R01 DC010997). We thank Yong He and Roel Willems for providing insightful comments to this study and Amie Fairs for proofreading the manuscript. No conflict of interest is declared.Peer reviewedPostprin

    VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild

    Full text link
    We present VideoReTalking, a new system to edit the faces of a real-world talking head video according to input audio, producing a high-quality and lip-syncing output video even with a different emotion. Our system disentangles this objective into three sequential tasks: (1) face video generation with a canonical expression; (2) audio-driven lip-sync; and (3) face enhancement for improving photo-realism. Given a talking-head video, we first modify the expression of each frame according to the same expression template using the expression editing network, resulting in a video with the canonical expression. This video, together with the given audio, is then fed into the lip-sync network to generate a lip-syncing video. Finally, we improve the photo-realism of the synthesized faces through an identity-aware face enhancement network and post-processing. We use learning-based approaches for all three steps and all our modules can be tackled in a sequential pipeline without any user intervention. Furthermore, our system is a generic approach that does not need to be retrained to a specific person. Evaluations on two widely-used datasets and in-the-wild examples demonstrate the superiority of our framework over other state-of-the-art methods in terms of lip-sync accuracy and visual quality.Comment: Accepted by SIGGRAPH Asia 2022 Conference Proceedings. Project page: https://vinthony.github.io/video-retalking

    Multifractal and entropy analysis of resting-state electroencephalography reveals spatial organization in local dynamic functional connectivity

    Get PDF
    Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported recently that fluctuations of global functional network topology and those of individual connections between brain regions expressed multifractal scaling. To expand on these findings, in this study we investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) on the regional level as well. Furthermore, we explored if local DFC showed region-specific differences in its multifractal and entropy-related features. DFC analyses were performed on 62-channel, resting-state electroencephalography recordings of twelve young, healthy subjects. Surrogate data testing verified the true multifractal nature of regional DFC that could be attributed to the presumed nonlinear nature of the underlying processes. Moreover, we found a characteristic spatial distribution of local connectivity dynamics, in that frontal and occipital regions showed stronger long-range correlation and higher degree of multifractality, whereas the highest values of entropy were found over the central and temporal regions. The revealed topology reflected well the underlying resting-state network organization of the brain. The presented results and the proposed analysis framework could improve our understanding on how resting-state brain activity is spatio-temporally organized and may provide potential biomarkers for future clinical research

    Altered Functional Connectivity of Insular Subregions in Alzheimer’s Disease

    No full text
    Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer’s disease (AD). However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI) data including 32 AD patients and 38 healthy controls (HCs). By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC) and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1) an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN); (2) a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN); (3) a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN). In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN) regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN), suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients

    Identifying Topological Motif Patterns of Human Brain Functional Networks

    No full text
    Recent imaging connectome studies demonstrated that the human functional brain network follows an efficient small-world topology with cohesive functional modules and highly connected hubs. However, the functional motif patterns that represent the underlying information flow remain largely unknown. Here, we investigated motif patterns within directed human functional brain networks, which were derived from resting-state functional magnetic resonance imaging data with controlled confounding hemodynamic latencies. We found several significantly recurring motifs within the network, including the two-node reciprocal motif and five classes of three-node motifs. These recurring motifs were distributed in distinct patterns to support intra-and inter-module functional connectivity, which also promoted integration and segregation in network organization. Moreover, the significant participation of several functional hubs in the recurring motifs exhibited their critical role in global integration. Collectively, our findings highlight the basic architecture governing brain network organization and provide insight into the information flow mechanism underlying intrinsic brain activities. (C) 2017 Wiley Periodicals, Inc.</p

    Different layouts of brain models.

    No full text
    <p>(A) The single view shows a single brain model in the figure as one of the three standard (sagittal, axial or coronal) views or a custom camera view. (B) The medium view shows the lateral and medial sides of each hemisphere in the figure. (C and D) The full view shows all sides of the brain surface. According to whether the brain surface file can be divided into two hemispheres, this mode displays brain models in two ways: (C) if not divisible, the left, right, dorsal, ventral, anterior and posterior sides are displayed separately; (D) otherwise, the lateral and medial sides of each hemisphere, and the dorsal and ventral sides and the anterior and posterior sides of the entire brain are shown.</p

    Spline-Based Optimal Trajectory Generation for Autonomous Excavator

    No full text
    In this paper, we propose a novel trajectory generation method for autonomous excavator teach-and-plan applications. Rather than controlling the excavator to precisely follow the teaching path, the proposed method transforms the arbitrary slow and jerky trajectory of human excavation into a topologically equivalent path that is guaranteed to be fast, smooth and dynamically feasible. This method optimizes trajectories in both time and jerk aspects. A spline is used to connect these waypoints, which are topologically equivalent to the human teaching path. Then the trajectory is reparametrized to obtain the minimum time-jerk trajectory with the kinodynamic constraints. The optimal time-jerk trajectory generation method is both formulated using nonlinear programming and conducted iteratively. The framework proposed in this paper was integrated into a complete autonomous excavation platform and was validated to achieve aggressive excavation in a field environment

    The main window of BrainNet Viewer.

    No full text
    <p>BrainNet Viewer is free software available on the NITRC website (<a href="http://www.nitrc.org/projects/bnv/" target="_blank">www.nitrc.org/projects/bnv/</a>), which runs with MATLAB under Windows, Linux and Mac OS, with either 32- or 64-bit systems. The latest version is 1.41, released September 18, 2012. The main window includes the menu bar, toolbar and contact information.</p
    corecore