59 research outputs found

    U–Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia

    Get PDF
    New U–Pb zircon data from metagranites and metavolcanic rocks of the Schist-Graywacke Complex Domain and the Schistose Domain of Galicia Tras-os-Montes Zone from central and NW Iberia contribute to constrain the timing of the Cambro-Ordovician magmatism from Central Iberian and Galicia Tras-os-Montes Zones which occurred between 498 and 462 Ma. The crystallization ages of the metagranites and metavolcanic rocks from the northern Schist-Graywacke Complex Domain are as follows: (a) in west Salamanca, 489 ± 5 Ma for Vitigudino, 486 ± 6 Ma for Fermoselle and 471 ± 7 Ma for Ledesma; (b) in northern Gredos, 498 ± 4 Ma for Castellanos, 492 ± 4 Ma for San Pelayo and 488 ± 3 Ma for Bercimuelle; (c) in Guadarrama, 490 ± 5 Ma for La Estacion I, 489 ± 9 Ma for La Canada, 484 ± 6 Ma for Vegas de Matute (leucocratic), 483 ± 6 Ma for El Cardoso, 482 ± 8 Ma for La Morcuera, 481 ± 9 Ma for Buitrago de Lozoya, 478 ± 7 Ma for La Hoya, 476 ± 5 Ma for Vegas de Matute (melanocratic), 475 ± 5 Ma for Riaza, 473 ± 8 Ma for La Estacion II and 462 ± 11 Ma for La Berzosa; and (d) in Toledo, 489 ± 7 Ma for Mohares and 480 ± 8 Ma for Polan. The crystallization ages of the metagranites from the Schistose Domain of Galicia Tras-os-Montes Zone are 497 ± 6 Ma for Laxe, 486 ± 8 Ma for San Mamede, 482 ± 7 Ma for Bangueses, 481 ± 5 Ma for Noia, 480 ± 10 for Rial de Sabucedo, 476 ± 9 Ma for Vilanova, 475 ± 6 Ma for Pontevedra, 470 ± 6 Ma for Cherpa and 462 ± 8 Ma for Bande.This magmatism is characterized by an average isotopic composition of (87Sr/86Sr)485Ma ≈ 0.712, (eNd)485Ma ≈ -4.1 and (TDM) ≈ 1.62 Ga, and a high zircon inheritance, composed of Ediacaran–Early Cambrian (65 %) and, to a lesser extent, Cryogenian, Tonian, Mesoproterozoic, Orosirian and Archean pre-magmatic cores. Combining our geochronological and isotopic data with others of similar rocks from the European Variscan Belt, it may be deduced that Cambro-Ordovician magmas from this belt were mainly generated by partial melting of Ediacaran–Early Cambrian igneous rocks

    Last Interglacial chronology and environmental change:New evidence from Southern Europe

    No full text

    Evidence for last interglacial chronology and environmental change from Southern Europe

    No full text
    Establishing phase relationships between earth-system components during periods of rapid global change is vital to understanding the underlying processes. It requires records of each component with independent and accurate chronologies. Until now, no continental record extending from the present to the penultimate glacial had such a chronology to our knowledge. Here, we present such a record from the annually laminated sediments of Lago Grande di Monticchio, southern Italy. Using this record we determine the duration (17.70 ± 0.20 ka) and age of onset (127.20 ± 1.60 ka B.P.) of the last interglacial, as reflected by terrestrial ecosystems. This record also reveals that the transitions at the beginning and end of the interglacial spanned only 100 and 150 years, respectively. Comparison with records of other earth-system components reveals complex leads and lags. During the penultimate deglaciation phase relationships are similar to those during the most recent deglaciation, peaks in Antarctic warming and atmospheric methane both leading Northern Hemisphere terrestrial warming. It is notable, however, that there is no evidence at Monticchio of a Younger Dryas-like oscillation during the penultimate deglaciation. Warming into the first major interstadial event after the last interglacial is characterized by markedly different phase relationships to those of the deglaciations, warming at Monticchio coinciding with Antarctic warming and leading the atmospheric methane increase. Diachroneity is seen at the end of the interglacial; several global proxies indicate progressive cooling after 115 ka B.P., whereas the main terrestrial response in the Mediterranean region is abrupt and occurs at 109.50 ± 1.40 ka B.P
    corecore