14 research outputs found

    QTL mapping of pre-harvest sprouting and stripe rust resistance in wheat cultivars Danby and Tiger

    Get PDF
    Doctor of PhilosophyDepartment of AgronomyGuihua BaiGuorong ZhangWheat yield and quality is influenced by many abiotic and biotic environmental factors. Pre-harvest sprouting (PHS) occurs when physiologically matured spikes are exposed to wet field conditions before harvest, which results in seed germination and causes significant losses in yield and end-use quality. Wheat stripe rust is one of the most important biotic factors reducing grain yield and quality. To investigate the genetic basis of the resistance to PHS and stripe rust in hard white winter wheat cultivars Danby and Tiger and develop molecular markers for marker- assisted breeding, a double haploid (DH) population, derived from those two cultivars, was genotyped with simple sequence repeats (SSR) markers and simple nucleotide polymorphism (SNP) markers. This DH population was assessed for resistance to PHS and stripe rust in both greenhouse and field experiments. For PHS, one major resistant quantitative trait locus (QTL) was consistently detected on the short arm of chromosome 3A in all three experiments conducted and explained 21.6% to 41.0% of the phenotypic variation (PVE). This QTL is corresponding to a previously cloned gene, TaPHS1. A SNP in the promoter of TaPHS1 co- segregated with PHS resistance in this mapping population. Meanwhile, two other QTLs, Qphs.hwwg-3B.1 and Qphs.hwwg-5A.1, were consistently detected on the chromosome arms 3BS and 5AL in two experiments. These two QTLs showed significant additive effects with TaPHS1 in improving PHS resistance. For stripe rust, three major QTLs were consistently detected in four out of six environments for infection type (IT) or disease severity (DS). Two of them, QYr.hwwg-2AS1 and QYr.hwwg-4BL1, contributed by the Danby allele explained up to 28.4% of PVE for IT and 60.5% of PVE for DS. The third QTL, QYr.hwwg-3BS1, contributed by the Tiger allele, had PVE values up to 14.7% for IT and 22.9% for DS. QYr.hwwg-2AS1 and QYr.hwwg- 4BL1 are likely the same resistance genes reported previously on chromosome arms 2AS and 4BL. However, QYr.hwwg-3BS1 might be different from the reported gene cluster near the distal end of 3BS where Yr57, Yr4, Yr30 and Sr2 were located. Significant additive effects on reducing IT and DS were observed among these three major QTLs. In order to pyramid multiple QTLs in breeding, user-friendly Kompetitive allele specific PCR (KASP) markers were successfully developed for several QTLs identified in this study. The QTLs and their interactions found in this study together with those novel flanking KASP markers developed will be useful not only for understanding genetic mechanisms of PHS and stripe rust resistance but also for marker- assisted breeding to improve wheat resistance to PHS and stripe rust by gene pyramiding

    Investigation of Salt Tolerance Mechanisms across a Root Developmental Gradient in Almond Rootstocks

    Get PDF
    The intensive use of groundwater in agriculture under the current climate conditions leads to acceleration of soil salinization. Given that almond is a salt-sensitive crop, selection of salt-tolerant rootstocks can help maintain productivity under salinity stress. Selection for tolerant rootstocks at an early growth stage can reduce the investment of time and resources. However, salinity-sensitive markers and salinity tolerance mechanisms of almond species to assist this selection process are largely unknown. We established a microscopy-based approach to investigate mechanisms of stress tolerance in and identified cellular, root anatomical, and molecular traits associated with rootstocks exhibiting salt tolerance. We characterized three almond rootstocks: Empyrean-1 (E1), Controller-5 (C5), and Krymsk-86 (K86). Based on cellular and molecular evidence, our results show that E1 has a higher capacity for salt exclusion by a combination of upregulating ion transporter expression and enhanced deposition of suberin and lignin in the root apoplastic barriers, exodermis, and endodermis, in response to salt stress. Expression analyses revealed differential regulation of cation transporters, stress signaling, and biopolymer synthesis genes in the different rootstocks. This foundational study reveals the mechanisms of salinity tolerance in almond rootstocks from cellular and structural perspectives across a root developmental gradient and provides insights for future screens targeting stress response

    Multiple origins, one evolutionary trajectory: gradual evolution characterizes distinct lineages of allotetraploid "Brachypodium"

    Get PDF
    The “genomic shock” hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession “Bhyb26.” We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species’ similarity in transposable element load may account for the subtlety of the observed genome dominance

    Effect of sex, temperature, time and flock size on the diving behavior of the wintering Scaly-sided Merganser (Mergus squamatus)

    No full text
    Abstract Background The foraging and diving behavior of waterfowl are affected by a number of important factors. Hence, learning more about these major factors is of great concern in order to protect endangered species. In this study, we verified the effect of sex, temperature, time and flock size on the diving behavior of the Scaly-sided Merganser (Mergus squamatus). Methods The study was conducted by means of focal animal sampling in the Wuyuan section of the Poyang Lake watershed in Jiangxi Province, China from December 2015 to March 2016. We used one-way ANOVA and LSD tests to investigate the differences among these factors. Pearson correlations were used to test the relation between pause duration and the previous or subsequent dive duration. The relations between these factors and dive/pause duration are illustrated using Spearman correlations. Results Mean dive duration and mean time on the pause of males were significantly higher than those of females. With an increase in temperature, dive duration significantly increased. Along with the passage of time of year and daytime, dive duration significantly increased, while dive duration decreased significantly with the increase in flock size. Conclusions Sex, temperature, time and flock size have an effect on the diving behavior of the wintering Scaly-sided Merganser. The difference of diving behavior between males and females is related to differences in body mass. The difference of diving behavior among various temperatures and time periods may be related to a low minimum rate of oxygen consumption, while the difference among various flock sizes may be caused by rising intraspecific competition

    Distributional and behavioral responses of the wintering Oriental Storks to drought in China's largest freshwater lake

    No full text
    Extreme droughts are increasing in frequency and severity globally as a result of climate change. Developing understanding of species' responses to drought is crucial for their conservation, especially in regions experiencing increased aridity. Although numerous studies have investigated birds' responses to drought, the emphasis has primarily been on landbirds. Drought can significantly alter the wetland environments that waterbirds inhabit, but the response of waterbirds to drought remains understudied. In this study, we surveyed the distribution and behavior of Oriental Storks (Ciconia boyciana) in Poyang Lake, which is the largest freshwater lake in China. Results indicate that drought-induced catchment areas at the lowest water level limited the total population size of Oriental Storks in the sub-lakes. Sub-lakes with large catchment areas at the lowest water level demonstrated a capacity to support a larger population of wintering Oriental Storks. Over time, Oriental Storks exhibited a gradual concentration in Changhu Lake, characterized by larger catchments, after resource depletion in sub-lakes with smaller catchments. Additionally, the duration of Oriental Storks’ vigilance and moving behaviors decreased significantly compared with that observed before the drought. After the drought, Oriental Storks increased their foraging efforts, as evidenced by increased presence in deeper water and reaching their heads and necks into deeper water to forage, higher search rates, but lower foraging rates. In accordance with area-restricted search theory, reductions in habitat quality resulting from drought, including extensive fish die-offs, forced Oriental Storks to increase their foraging efforts. Sustaining a specific water area in sub-lakes during droughts can preserve resource availability, which is crucial for the conservation of Oriental Storks. Implementing measures such as water level control and micro-modification of lake bottoms in sub-lakes might mitigate the impact of drought on the piscivorous Oriental Storks

    Habitat Selection of Wintering Chinese Merganser, Mergus squamatus

    No full text
    Abstract.-Habitat selection of wintering Chinese merganser Mergus squamatus was studied using field surveys that documented merganser occurrence in the Poyang Lake Watershed in eastern China, and GIS analysis. Merganser used the widest reaches of rivers, and islands and shoals habitats that accounted for only a small proportion of overall habitat. Percentage of woodland and farmland along the river bank was large. Chinese merganser apparently adapted to large-scale width variation of the river using vegetation cover to mitigate effects of human activity. Distance between the river, where merganser resided, and artificial land (residence, industrial land and bridge) was relatively far, while the distance between river and motorways was relative short. Chinese merganser preferred habitat which had larger percentage of island and was far away from artificial land. In winter, the Chinese merganser was able to tolerate small degree of disturbance such as small population or traffic flow, but avoided higher levels of disturbance. Effective winter habitat protection for the Chinese merganser should include protecting watersheds from flooding and avoiding excessive human activity particularly on more narrow reaches of rivers that are devoid of vegetation

    Per- and polyfluoroalkyl substances in waterbird feathers around Poyang Lake, China: Compound and species-specific bioaccumulation

    No full text
    As a nondestructive means of environmental monitoring, bird feathers have been used to analyze levels of per- and polyfluoroalkyl substances (PFASs) in specific environments. In this study, feather samples from 10 waterbird species around Poyang Lake were collected, and a pretreatment method for PFASs in feathers was optimized. The results showed that a combined cleaning method using ultrapure water and n-hexane effectively removed external PFASs. Twenty-three legacy and emerging PFASs were identified in the feathers of waterbirds, of which hexafluoropropylene oxides (HFPOs), chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), and sodium p-perfluorinated noneoxybenzene sulfonate (OBS) were reported for the first time, with their concentrations ranging from 0.060–2.4 ng·g−1 dw, 0.046–30 ng·g−1 dw, and lower than the method detection limit to 30 ng·g−1 dw, respectively. Compound- and species-specific bioaccumulation of PFASs was observed in the feathers of different waterbird species, suggesting that different PFAS types can be monitored through the selection of different species. Moreover, the concentrations of most PFCAs (except perfluorobutyric acid), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA) were significantly positively correlated with δ15N (p < 0.05), while the concentrations of HFPOs, Cl-PFESAs, and OBS had significant positive correlations with δ13C. This indicates that the bioaccumulation of legacy and emerging PFASs in waterbird feathers is affected by their trophic level, feeding habits, and foraging area

    PHYTOCHROME C regulation of photoperiodic flowering via PHOTOPERIOD1 is mediated by EARLY FLOWERING 3 in Brachypodium distachyon.

    No full text
    Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon

    Oily fish and raw vegetable consumption can decrease the risk of AQP4-positive neuromyelitis optica spectrum disorders: a Mendelian-randomization study

    No full text
    Abstract Neuromyelitis optica spectrum disorders (NMOSD) are severe inflammatory disorders of the central nervous system targeting aquaporin‐4 (AQP4). The risk factors for NMOSD remain to be determined, though they may be related to diet and nutrition. This study aimed to explore the possibility of a causal relationship between specific food intake and AQP4-positive NMOSD risk. The study followed a two-sample Mendelian randomization (MR) design. Genetic instruments and self-reported information on the intake of 29 types of food were obtained from a genome-wide association study (GWAS) on 445,779 UK Biobank participants. A total of 132 individuals with AQP4-positive NMOSD and 784 controls from this GWAS were included in our study. The associations were evaluated using inverse-variance-weighted meta-analysis, weighted-median analysis, and MR-Egger regression. A high consumption of oily fish and raw vegetables was associated with a decreased risk of AQP4-positive NMOSD (odds ratio [OR] = 1.78 × 10−16, 95% confidence interval [CI] = 2.60 × 10−25–1.22 × 10−7, p = 0.001; OR = 5.28 × 10−6, 95% CI = 4.67 × 10−11–0.598, p = 0.041, respectively). The results were consistent in the sensitivity analyses, and no evidence of directional pleiotropy was observed. Our study provides useful implications for the development of AQP4-positive NMOSD prevention strategies. Further research is needed to determine the exact causal relationship and mechanisms underlying the association between specific food intake and AQP4-positive NMOSD
    corecore