101 research outputs found

    Diethyl 2-tert-butyl-4,11-dioxo-2,3-di­hydro-cis-1H,5H,10H-2,3a,4a,10a,11a-penta­azabenzo[f]indeno[2,1,7-ija]azulene-11b,11c-dicarboxyl­ate

    Get PDF
    In the title mol­ecule, C24H31N5O6, the two ethyl fragments are each disordered over two conformations [occupancy ratios 0.58 (13)/0.42 (13) and 0.56 (12)/0.44 (12)]. The crystal packing exhibits inter­molecular non-classical C—H⋯O hydrogen bonds and π–π inter­actions between benzene rings [centroid–centroid distances = 3.836 (5) Å]

    SVDFormer: Complementing Point Cloud via Self-view Augmentation and Self-structure Dual-generator

    Full text link
    In this paper, we propose a novel network, SVDFormer, to tackle two specific challenges in point cloud completion: understanding faithful global shapes from incomplete point clouds and generating high-accuracy local structures. Current methods either perceive shape patterns using only 3D coordinates or import extra images with well-calibrated intrinsic parameters to guide the geometry estimation of the missing parts. However, these approaches do not always fully leverage the cross-modal self-structures available for accurate and high-quality point cloud completion. To this end, we first design a Self-view Fusion Network that leverages multiple-view depth image information to observe incomplete self-shape and generate a compact global shape. To reveal highly detailed structures, we then introduce a refinement module, called Self-structure Dual-generator, in which we incorporate learned shape priors and geometric self-similarities for producing new points. By perceiving the incompleteness of each point, the dual-path design disentangles refinement strategies conditioned on the structural type of each point. SVDFormer absorbs the wisdom of self-structures, avoiding any additional paired information such as color images with precisely calibrated camera intrinsic parameters. Comprehensive experiments indicate that our method achieves state-of-the-art performance on widely-used benchmarks. Code will be available at https://github.com/czvvd/SVDFormer.Comment: Accepted by ICCV 202

    Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000

    Get PDF
    Background: The implementation of novel chassis organisms to be used as microbial cell factories in industrial applications is an intensive research field. Lactococcus lactis, which is one of the most extensively studied model organisms, exhibits superior ability to be used as engineered host for fermentation of desirable products. However, few studies have reported about genome reduction of L. lactis as a clean background for functional genomic studies and a model chassis for desirable product fermentation. Results: Four large nonessential DNA regions accounting for 2.83% in L. lactis NZ9000 (L. lactis 9 k) genome (2,530,294 bp) were deleted using the Cre-loxP deletion system as the first steps toward a minimized genome in this study. The mutants were compared with the parental strain in several physiological traits and evaluated as microbial cell factories for heterologous protein production (intracellular and secretory expression) with the red fluorescent protein (RFP) and the bacteriocin leucocin C (LecC) as reporters. The four mutants grew faster, yielded enhanced biomass, achieved increased adenosine triphosphate content, and diminished maintenance demands compared with the wild strain in the two media tested. In particular, L. lactis 9 k-4 with the largest deletion was identified as the optimum candidate host for recombinant protein production. With nisin induction, not only the transcriptional efficiency but also the production levels of the expressed reporters were approximately three-to fourfold improved compared with the wild strain. The expression of lecC gene controlled with strong constitutive promoters P5 and P8 in L. lactis 9 k-4 was also improved significantly. Conclusions: The genome-streamlined L. lactis 9 k-4 outcompeted the parental strain in several physiological traits assessed. Moreover, L. lactis 9 k-4 exhibited good properties as platform organism for protein production. In future works, the genome of L. lactis will be maximally reduced by using our specific design to provide an even more clean background for functional genomics studies than L. lactis 9 k-4 constructed in this study. Furthermore, an improved background will be potentially available for use in biotechology.Peer reviewe

    Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system

    Get PDF
    Background After 2.83% genome reduction in Lactococcus lactis NZ9000, a good candidate host for proteins production was obtained in our previous work. However, the gene deletion process was time consuming and laborious. Here, we proposed a convenient gene deletion method suitable for large-scale genome reduction in L. lactis NZ9000. Results Plasmid pNZ5417 containing a visually selectable marker P-nisZ-lacZ was constructed, which allowed more efficient and convenient screening of gene deletion mutants. Using this plasmid, two large nonessential DNA regions, L-4A and L-5A, accounting for 1.25% of the chromosome were deleted stepwise in L. lactis 9k-3. When compared with the parent strain, the mutant L. lactis 9k-5A showed better growth characteristics, transformability, carbon metabolic capacity, and amino acids biosynthesis. Conclusions Thus, this study provides a convenient and efficient system for large-scale genome deletion in L. lactis through application of visually selectable marker, which could be helpful for rapid genome streamlining and generation of restructured L. lactis strains that can be used as cell factories.Peer reviewe

    Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system

    Get PDF
    Background After 2.83% genome reduction in Lactococcus lactis NZ9000, a good candidate host for proteins production was obtained in our previous work. However, the gene deletion process was time consuming and laborious. Here, we proposed a convenient gene deletion method suitable for large-scale genome reduction in L. lactis NZ9000. Results Plasmid pNZ5417 containing a visually selectable marker P-nisZ-lacZ was constructed, which allowed more efficient and convenient screening of gene deletion mutants. Using this plasmid, two large nonessential DNA regions, L-4A and L-5A, accounting for 1.25% of the chromosome were deleted stepwise in L. lactis 9k-3. When compared with the parent strain, the mutant L. lactis 9k-5A showed better growth characteristics, transformability, carbon metabolic capacity, and amino acids biosynthesis. Conclusions Thus, this study provides a convenient and efficient system for large-scale genome deletion in L. lactis through application of visually selectable marker, which could be helpful for rapid genome streamlining and generation of restructured L. lactis strains that can be used as cell factories.Peer reviewe

    Ultrafast Suppression of the Ferroelectric Instability in KTaO3_3

    Full text link
    We use an x-ray free-electron laser to study the ultrafast lattice dynamics following above band-gap photoexcitation of the incipient ferroelectric potassium-tantalate, \kto. % We use ultrafast near-UV (central wavelength 266\,nm and 50 fs pulse duration) laser light to photoexcite charge carriers across the gap and probe the ultrafast lattice dynamics by recording the x-ray diffuse intensity throughout multiple Brillouin zones using pulses from the Linac Coherent Light Source (LCLS) (central wavelength 1.3\,\AA\, and <10< 10~fs pulse duration). We observe changes in the diffuse intensity that we conclude are associated with a hardening of the soft transverse optical and transverse acoustic phonon branches along Γ\Gamma to XX and Γ\Gamma to MM. Using ground- and excited-state interatomic force constants from density functional theory (DFT) and assuming the phonon populations can be described by a time-dependent temperature, we fit the quasi-equilibrium thermal diffuse intensity to the experimental time-dependent intensity. We obtain the instantaneous lattice temperature and density of photoexcited charge carriers as a function of time delay. The DFT calculations demonstrate that photoexcitation transfers charge from oxygen 2p2p derived π\pi-bonding orbitals to Ta 5d5d derived antibonding orbitals, further suppressing the ferroelectric instability and increasing the stability of the cubic, paraelectric structure.Comment: 8 pages, 4 figure

    Heterologous signal peptides-directing secretion of Streptomyces mobaraensis transglutaminase by Bacillus subtilis

    Get PDF
    Microbial transglutaminase (MTG) from Streptomyces mobaraensis has been widely used for crosslinking proteins in order to acquire products with improved properties. To improve the yield and enable a facile and efficient purification process, recombinant vectors, harboring various heterologous signal peptide-encoding fragments fused to the mtg gene, were constructed in Escherichia coli and then expressed in Bacillus subtilis. Signal peptides of both WapA and AmyQ (SP wapA and SP amyQ ) were able to direct the secretion of pre-pro-MTG into the medium. A constitutive promoter (P hpaII ) was used for the expression of SP wapA -mtg, while an inducible promoter (P lac ) was used for SP amyQ -mtg. After purification from the supernatant of the culture by immobilized metal affinity chromatography and proteolysis by trypsin, 63.0 ± 0.6 mg/L mature MTG was released, demonstrated to have 29.6 ± 0.9 U/mg enzymatic activity and shown to crosslink soy protein properly. This is the first report on secretion of S. mobaraensis MTG from B. subtilis, with similar enzymatic activities and yields to that produced from Escherichia coli, but enabling a much easier purification process

    High Density Lipoprotein Protects Mesenchymal Stem Cells from Oxidative Stress-Induced Apoptosis via Activation of the PI3K/Akt Pathway and Suppression of Reactive Oxygen Species

    Get PDF
    The therapeutic effect of transplantation of mesenchymal stem cells (MSCs) in myocardial infarction (MI) appears to be limited by poor cell viability in the injured tissue, which is a consequence of oxidative stress and pro-apoptotic factors. High density lipoprotein (HDL) reverses cholesterol transport and has anti-oxidative and anti-apoptotic properties. We, therefore, investigated whether HDL could protect MSCs from oxidative stress-induced apoptosis. MSCs derived from the bone marrow of rats were pre-incubated with or without HDL, and then were exposed to hydrogen peroxide (H2O2) in vitro, or were transplanted into experimentally infarcted hearts of rats in vivo. Pre-incubation of MSCs with HDL increased cell viability, reduced apoptotic indices and resulted in parallel decreases in reactive oxygen species (ROS) in comparison with control MSCs. Each of the beneficial effects of HDL on MSCs was attenuated by inhibiting the PI3K/Akt pathway. Preconditioning with HDL resulted in higher MSC survival rates, improved cardiac remodeling and better myocardial function than in the MSC control group. Collectively, these results suggest that HDL may protect against H2O2-induced apoptosis in MSCs through activation of a PI3K/Akt pathway, and by suppressing the production of ROS
    corecore