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Abstract
Microbial transglutaminase (MTG) from Streptomyces mobaraensis has been widely used for crosslinking proteins in order to
acquire products with improved properties. To improve the yield and enable a facile and efficient purification process, recom-
binant vectors, harboring various heterologous signal peptide-encoding fragments fused to the mtg gene, were constructed in
Escherichia coli and then expressed inBacillus subtilis. Signal peptides of bothWapA andAmyQ (SPwapA and SPamyQ) were able
to direct the secretion of pre-pro-MTG into the medium. A constitutive promoter (PhpaII) was used for the expression of SPwapA-
mtg, while an inducible promoter (Plac) was used for SPamyQ-mtg. After purification from the supernatant of the culture by
immobilizedmetal affinity chromatography and proteolysis by trypsin, 63.0 ± 0.6 mg/LmatureMTGwas released, demonstrated
to have 29.6 ± 0.9 U/mg enzymatic activity and shown to crosslink soy protein properly. This is the first report on secretion of
S. mobaraensis MTG from B. subtilis, with similar enzymatic activities and yields to that produced from Escherichia coli, but
enabling a much easier purification process.

Keywords Transglutaminase . Bacillus subtilis . Secretion . Signal peptides

Introduction

Transglutaminase (EC 2.3.2.13, protein-glutamine gamma-
glutamyltransferase, TG) is an enzyme that catalyzes the
acyl transfer reaction between γ-carboxyamide groups and
primary amines within or between peptides or proteins
(Gundersen et al. 2014). The crosslinked products display

great stability, with high resistance to protease-degradation
and chemical damage. Thus, they have been widely applied
in various fields, including food and feed (Jaros et al. 2006;
Yokoyama et al. 2004).

Eukaryotic TGs are widely distributed in animals (Chung
et al. 1974; Folk and Cole 1966) and plants (Della et al. 2004),
but are hard to be extracted from these organizations due to
limited source availability and a relatively difficult purifica-
tion process (Kieliszek and Misiewicz 2014). Furthermore,
eukaryotic TGs ususally have a relatively narrow substrate
specificity, for example,β-casein and several of its derivatives
are excellent substrates for factor XIII, but cannot be catalyzed
by the liver transglutaminase (Gorman and Folk 1980; Nielsen
1995). In prokaryotes, microbial transglutaminase (MTG) has
been first detected from the culture medium of Streptomyces
sp. (Ando et al. 1989), where it is initially expressed as a pre-
pro-enzyme possessing 331 amino acids which becomes ac-
tive after proteolysis (Kikuchi et al. 2003; Masayo et al. 2004;
Yang et al. 2011). Compared to eukaryotic TGs, MTG has
several advantages: (a) microbial fermentation costs less than
feeding animals and growing plants, (b) the enzymatic activity
of MTG is calcium-dependent only when measuring NH3-
release during crosslinking of caseinate (Macedo et al. 2011;

Dongdong Mu and Jiaojiao Lu Shared the first authors

* Dongdong Mu
d.mu@hfut.edu.cn

* Zhi Zheng
zhengzhi@hfut.edu.cn

1 School of Food Science and Engineering, Key Laboratory for
Agricultural Products Processing of Anhui Province, Hefei
University of Technology, Hefei, China

2 Key Laboratory of Molecular Microbiology and Technology,
Ministry of Education, College of Life Sciences, Nankai University,
Tianjin, China

3 Molecular Genetics Group, University of Groningen,
Groningen, The Netherlands

4 School of Science, Anhui Agricultural University, Hefei, China

Applied Microbiology and Biotechnology (2018) 102:5533–5543
https://doi.org/10.1007/s00253-018-9000-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-018-9000-y&domain=pdf
mailto:d.mu@hfut.edu.cn
mailto:zhengzhi@hfut.edu.cn


Nielsen 1995). Therefore, MTG has been more widely used in
the food industry, leading to improved texture and stability of
foods with regard to temperature, syneresis, emulsifying prop-
erties, gelation, and increased water-binding capacity, without
changing the pH, color, flavor, or nutritional quality of the
food product. The process may even render food more nutri-
tious thanks to the possibility of adding essential amino acids
(Gaspar and de Góes-Favoni 2015).

To date, mainly a bacterial expression system with
Streptoverticillium mobaraensis has been used to
biosynthesize transglutaminases. However, this system has
some drawbacks, involving, e.g., problems related to post-
translational protein modification (Griffin et al. 2002). Thus,
developing a cheaper and more efficient production system
that will allow for a reduction of costs associated with the
distribution, storage, extraction, and purification of TG recom-
binant proteins is worthy of attempting. Escherichia coli is the
most commonly used one for the production of heterologous
proteins. However, the formation of intracellular inclusion
bodies of MTG in E. coli limited the purification process to
an uneconomic level (Salis et al. 2015; Yokoyama et al. 2000).
Some attempts to extracellularly express MTG from E. coli by
fusing a PelB signal peptide in front of the mtg gene have
failed and lead protein into the periplasm instead of the culture
medium (Marx et al. 2007).

Bacillus subtilis is one of the most well-known host strains
for efficient secretion of proteins of interest and is generally
recognized as safe (Liu et al. 2013; Maarten and Michael
2013; Song et al. 2015). In this study, we constructed two
separate MTG secretion systems in B. subtilis: one involves
constitutive expression based on vector pMA5 (Zhang et al.
2006), and the other involves inducible expression based on
vector pHT43 (Nguyen et al. 2007). MTG with a
hexahistidine tag (MTG-6His) was secreted and purified suc-
cessfully from both systems (constitutive system, 63.0 ±
0.6 mg/L; inducible system, 54.1 ± 0.3 mg/L) and proven to
be highly active after proteolysis by trypsin with enzymatic
activity of up to 29.6 ± 0.9 U/mg. These two newly
established systems provide effective toolboxes for easy puri-
fication of MTG and for its future bioengineering.

Materials and methods

Vectors, strains, and growth conditions

Strains and vectors used in this work are listed in Table 1.
S. mobaraensis (CGMCC 4.5591) was purchased from the
China General Microbiological Culture Collection Center
(CGMCC, Beijing, China) and was cultured in TSBY medi-
um (30 g/L Oxoid tryptone soya broth, 340 g/L sucrose, 5 g/L
Oxoid yeast extract) (Guan et al. 2015). E. coli DH5α
(Novagen Company, Shanghai, China) was cultured in

Luria-Bertani (LB) medium or on agar plates. B. subtilis 168
(ATCC 33712) was purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA) and was
cultured in Luria-Bertani (LB) medium or on agar plates.
For fermentation, fermentation medium (2.5 g of corn starch,
20 g of peptone, 0.8 g of urea, 3.26 g of K2HPO4.3H2O, 2.54 g
of KH2PO4, 0.92 g of MgSO4, 3 g of NaCl, and 35 g of
sucrose per liter of distilled water) was used for B. subtilis
(Feng et al. 2017). Ampicillin was added to the growth medi-
um of E. coli DH5α at a final concentration of 100 μg/ml
whenever necessary. Kanamycin was added to the growth
medium of B. subtilis at a final concentration of 25 μg/ml
whenever necessary. Chloramphenicol was added to the
growth medium of B. subtilis at a final concentration of
5 μg/ml whenever necessary.

Molecular cloning

Molecular cloning techniques were performed as described by
(Sambrook and Russell 2001). Preparation of competent cells
and transformation of E. coli (Dower et al. 1988) and
B. subtilis (Cao et al. 2011) were performed as described pre-
viously. Fast digest restriction enzymes and ligase were sup-
plied by Fermentas (St. Leon-Rot, Germany) and used accord-
ing to the manufacturer’s instructions. The sequence of the
mtg gene from S.mobaraense was deposited in the GenBank
database under accession number DQ132977. The sequence
of the wapA gene from B. subtilis was deposited in the
GenBank database under accession number JQ302213. The
sequence of the amyQ gene from Bacillus amyloliquefasciens
was deposited in the GenBank database under accession num-
ber J01542.

Construction of recombinant vectors

Plasmid isolation and genomic DNA extraction were per-
formed with the plasmid DNA extraction kit and genomic
DNA extraction kit (TransGen Biotech, Beijing, China), re-
spectively. Primers used in this work are listed in Table 2.
Plasmid expressing the recombinant MTG gene consisting
of the signal sequence of B. subtilis wapA was constructed
by overlap PCR (Fig. 1a) (Heckman and Pease 2007).
Primers p1 and p2 were designed to amplify the WapA
signal peptide gene fragment (NdeI-SPwapA-overlapseq) from
genomic DNA of B. subtilis 168 (Harwood 1992). A NdeI
site was added to the 5′ end of primer p1. The DNA frag-
ment of mtg lacking its initial peptide sequence (mtg-6his-
NheI) was amplified by primers p3 and p4. Codons of hexa
histidine followed by a NheI site were added to the 5′ end of
primer p4. Primers p2 and p3 were designed to be reversely
complementary by overlapping the 5′ ends of each other.
The fragment SPwapA-mtg-6his was generated by spliced
overlap extension PCR with primers p1 and p4 using the
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mixture of NdeI-SPwapA-overlapseq and mtg-6his-NheI
amplicons as the templates (Niwa et al. 1996). After the
digestion by NdeI and NheI, SPwapA-mtg-6his was cloned
into pMA5 (Zhang et al. 2006), digested with the same
enzymes to create the plasmid pMA5mtg in which the recom-
binant SPwapA-MTG-6His will be expressed under control of
the constitutive promoter PhpaII (Fig. 1a).

In vector pHT43 (Nguyen et al. 2007), restriction sites
BamHI and XbaI following the amyQ signal sequence locate
in close proximity to each other, which hampers insertion of an
exogenous gene. In order to insert mtg into vector pHT43 be-
tween BamHI and XbaI to form the fused SPamyQ-mtg gene, a
random region amplified from vector pNZ8048 (de Ruyter
et al. 1996) by primers p5 and p6 was introduced between

Table 1 Strains and vectors used
in this work Strain or vector Characteristic Information Reference

Strains

S. mobaraensis

Used for cloning of mtg gene CGMCC 4.5591,
(CGMCC, Beijing,
China)

(Ando et al. 1989)

B. subtilis 168 Expression host strain ATCC 33712, (ATCC,
Manassas, VA, USA)

(Harwood 1992)

B. subtilis
WB600

Protease deficiency type,
expression host strain

Novagen Company,
Shanghai, China

(Wu et al. 1991)

E. coli DH5α Intermediate host for the
vector constructions

Novagen Company,
Shanghai, China

(Sambrook and
Russell 2001)

Vectors

pNZ8048 Used for cloning of
random sequence

Novagen Company,
Shanghai, China

(de Ruyter et al. 1996)

pMA5 Shuttle vector; AmpR(E. coli);
KanR(B. subtilis)

Novagen Company,
Shanghai, China

(Zhang et al. 2006)

pHT43 Shuttle vector; AmpR(E. coli);
CmR(B. subtilis)

Novagen Company,
Shanghai, China

(Nguyen et al. 2007)

pMA5mtg Recombinant expression vector;
AmpR(E. coli); KanR

(B. subtilis)

Carrys fused mtg gene
containing mtg
propeptide
from S. mobaraensis

This work

pHT43random Intermediate vector;
AmpR(E. coli); CmR

(B. subtilis)

The distance between
BamHI and XbaI on
pHT43random was
lengthened compared
with pHT43

This work

pHT43mtg Recombinant expression vector;
AmpR(E. coli); CmR

(B. subtilis)

Carrys fused mtg gene
containing mtg
propeptide from
S. mobaraensis

This work

AmpR ampicillin resistance, KanR kanamycin resistance, CmR chloramphenicol resistance

Table 2 Primers used in this study

Gene Primer Sequence (5′–3′) Characteristic/function

wapA p1 GGAATTCCATATGAAAAAAAGAAAGAGGCGA NdeI cleavage site

p2 CTCTTCCCCCGCGCCATTGTCTGCTAGTACATCGGCTGGCAC Overlap the 5′ end of p3

mtg p3 GTGCCAGCCGATGTACTAGCAGACAATGGCGCGGGGGAAGAG Overlap the 5′ end of p2

p4 GCGGCCGCTAGCTCAGTGATGGTGATGGTGATGCGGCCAGCCCTGCTTTACCTTG Codons of hexa histidine
followed by a NheI
cleavage site

random p5 CGCGGATCCTCCTGACTCAATTCCTAATG BamHI cleavage site

p6 TCCCCCCGGGTCTAGATAACTTGCTCTATATCCACACTG XbaI-XmaI cleavage site

mtg p7 CGCGGATCCGACAATGGCGCGGGGGAAGAG BamHI cleavage site

p8 GTAGTCTAGATCAGTGATGGTGATGGTGATGCGGCCAGCCCTGCTTTACCTTG Codons of hexa histidine
followed by a XbaI cleavage site
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BamHI and XmaI in pHT43 by relative restriction enzyme di-
gestion. The resulting vector was designated as pHT43random.
Because a XbaI site was added to the 5′ end of p6, the distance
between BamHI and XbaI on pHT43random was lengthened
making inserting exogenous gene withinBamHI-XbaI possible.
A BamHI site was added to the 5′ end of primer p7, and codons
of hexa histidine followed by a XbaI site were added to the 5′
end of primer p8. The DNA fragment of mtg lacking its initial
peptide sequence (BamHI-mtg-6his-XbaI) was amplified by
primers p7 and p8. After the digestion by BamHI and XbaI,
mtg-6his was fused after AmyQ signal peptide encoding gene
resulting in pHT43mtg where the recombinant SPamyQ-mtg-6his
will be controlled by inducible promoter Plac (Fig. 1b).

All recombinant vectors were constructed in E. coli DH5α
(Sambrook and Russell 2001), then transformed into
B. subtilis and extracted to check by DNA sequencing.

Growth curve of recombinant MTG-His expression
strains

B. subtilis strains with/without vector were inoculated into 5 ml
of fresh LB medium with/without relevant antibiotics and cul-
tured overnight at 37 °C. One milliliter of the overnight culture
was inoculated into 100 ml of fresh LB; the growth curve was
drawn by measuring OD600 absorbance value during 0–24-h
cultivations and fresh LB medium was used as control.

Fig. 1 Expression systems used in this study. a: Construction of pMA5mtg, b: Construction of pHT43mtg
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Constitutive expression and purification
of recombinant SPwapA-MTG-6His

The overnight grown culture of B. subtilis strains harboring
pMA5mtg were inoculated at 1:100 ratio into fresh fermention
medium and grew for 12, 24, and 48 h. Supernatant was ob-
tained after centrifugation at 8000 rpm for 10 min, and proteins
were purified and analyzed by SDS-PAGE (Mu et al. 2018).
Purification from B. subtilis 168 (pMA5) with fermentation
time of 48 h was treated as control.

Inducible expression and purification of recombinant
SPamyQ-MTG-6His

B. subtilis 168 harboring pHT43mtg was grown overnight at
LB plates containing a final concentration of 5 μg/ml chlor-
amphenicol at 37 °C, then a single clone was picked into 5 ml
of fresh LB medium containing 5 μg/ml chloramphenicol and
cultured overnight at 37 °C in a shaker at 200 rpm. The seed
culture of B. subtilis 168 harboring pHT43mtg was inoculated
at 1:100 ratio into fresh fermention medium. When the OD600

reached 0.5, the culture was induced by 10 μM IPTG (final
concentration) and grew for another 2, 12, 24, and 48 h.
Supernatant was obtained after centrifugation at 8000 rpm
for 10 min, and proteins were purified and analyzed by
SDS-PAGE (Mu et al. 2018).

Optimization of the inducer concentration

The overnight grown culture of B. subtilis 168 harboring
pHT43mtg was inoculated at 1:100 ratio into fresh fermention
medium.When the OD600 reached 0.5, the culture was splitted
into five parallel samples, which were induced by 10, 20, 40,
80, and 120 μM of IPTG, respectively, and grew for another
12 h (since the induction time is optimized at 12 h in the above
process). Supernatant was obtained after centrifugation at
8000 rpm for 10 min, and proteins were purified and analyzed
by SDS-PAGE (Mu et al. 2018).

Protein purification and digestion

Following centrifugation at 8000 rpm for 10 min, 20 ml of
supernatant was taken from the culture of each sample and used
for immobilized metal affinity chromatography (IMAC). The
obtained supernatants were directly applied to a nickel-
nitrilotriacetic acid (Ni-NTA) column. The nickel-
nitrilotriacetic acid (Ni-NTA) column resin was equilibrated
twice with 38.5 ml lysis buffer (50 mM NaH2PO4, 300 mM
NaCl, 10 mM imidazole, pH 8), and then 20 ml of supernatants
were allowed to bind to 2 ml of the column resin on a rotor at
room temperature for 2 h. Subsequently, the column was
washed twice with 35 ml of wash buffer (50 mM NaH2PO4,
300mMNaCl, 20mM imidazole, pH 8). Purified proteins were

collected by elution buffer (50 mM NaH2PO4, 300 mM NaCl,
250 mM imidazole, pH 8) in the same volume of column resin,
and analyzed by SDS-PAGE (Mu et al. 2018).

Twenty milliliters of supernatants taken from either 48-h
cultivation of B. subtilis 168 harboring pMA5mtg or 12-h cul-
tivation of 80 μM IPTG-induced B. subtilis 168 harboring
pHT43mtg were digested with 200 μg/ml (final concentration)
trypsin, respectively, for 1 h at 37 °C. MatureMTG-6His were
purified by IMAC (see above), analyzed by SDS-PAGE (Mu
et al. 2018) and stored at − 80 °C for further use.

Enzymatic activity assay of MTG-6His

In order to measure the enzymatic activity of mature MTG-
6His, the concentration of MTG-6His was determined using a
Bradford Protein Assay Kit (Bradford 1976), a colorimetric
hydroxamate procedure using N-benzyloxycarbonyl-L-
glutaminylglycine (Z-Gln-Gly, Sigma-Aldrich Co., St.
Louis, MO, USA) as a substrate was then carried out
(Grossowicz et al. 1950). Fifty microliters of enzyme solution
was mixed with 90 μl substrate solution (final concentrations:
200 mM Tris/HCl-buffer, 100 mM hydroxylamine, 10 mM
reduced glutathione, 30 mM Z-Gln-Gly, pH 6.0). After incu-
bation at 37 °C for 10 min, the reaction was stopped with
160 μl stopping reagent (1 vol. 3 M HCl, 1 vol. 12% trichlo-
roacetic acid, 1 vol. 5% FeCl3.6H2O (in 0.1 M HCl)). The
extinction of the reaction mixture was measured at 525 nm
using a microtiter plate reader. One unit of MTG activity was
defined as the amount of enzyme required for the formation of
1 μmol L-glutamic acid γ-monohydroxamate/min at 37 °C
and pH 6.0.

Crosslinking of soy protein isolate (SPI)

One percent (w/v) SPI solution was prepared with distilled
water and stirred for 12 h at room temperature. The solution
was centrifuged at 13,300 rpm for 5 min to filter soluble pro-
teins existing in the supernatant; the supernatant was then
mixed with MTG at a ratio of 50:5 (v/v). The mixture was
incubated at 37 °C in a shaker at 200 rpm, samples were taken
from the reactions at 30, 60, and 120 min. Two controls were
incubated in the same conditions consisting of mature MTG-
6His in water and SPI in water. Finally, all the samples and
controls were mixed with sample buffer and analyzed by
SDS-PAGE gels after staining with 0.25%Coomassie brilliant
blue R250.

Statistical analysis

All tests were repeated at least three times, and the data were
expressed as mean ± standard deviation (SD). All analyses
were performed using the SPSS software (v.13.0, SPSS Inc.,
Chicago, Ill., U.S.A.).
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Results

SPwapA is able to direct secretion of MTG-6His

To select the host strain with highest productivity, pMA5mtg
(Fig. 1a) was transformed into B. subtilis WB600 (strain
deficient in six extracellular proteases; Wu et al. 1991) and
B. subtilis 168 (Harwood 1992) respectively, obtaining
B. subtilis WB600 (pMA5mtg) and B. subtilis 168
(pMA5mtg). SPwapA-MTG-6His purified from both B. subtilis
WB600 (pMA5mtg) and B. subtilis 168 (pMA5mtg) with fer-
mentation times of 12, 24, and 48 h were analyzed by SDS-
PAGE and software of BANDSCAN and B. subtilis 168
(pMA5) was treated as control. As shown in Fig. 2a, a protein
band of with a molecular weight equivalent to the calculated
mass (46.9 kDa) of SPwapA-MTG-6His was detected in all six
samples except the control indicating the successful secretion
of SPwapA-MTG-6His in B. subtilis. Moreover, when fermen-
tation time was prolonged, productivity of SPwapA-MTG-6His
increased (Fig. 2b) with 48 h fermented B. subtilis producing
the largest quantity of SPwapA-MTG-6His (B. subtilisWB600
3.7/2.6 times of that of 12 h/24 h fermented sample (P < 0.01);
B. subtilis 168: 4.1/1.5 times of that of 12 h/24 h fermented
sample) (P < 0.01). The amount of SPwapA-MTG-6His obtain-
ed from 24 h/48 h fermented B. subtilis 168 is 1.9/1.1 times of
that of B. subtilis WB600 (P < 0.01) implying deleting six
proteases did not contribute to more accumulation of SPwapA
-MTG-6His in B. subtilis. Based on this result, B. subtilis 168
was selected as host strain for the rest of the experiments.

SPamyQ is able to direct secretion of MTG-6His

The vector pHT43mtg (Fig. 1b) was transformed into
B. subtilis 168, obtaining B. subtilis 168 (pHT43mtg).
Supernatants from 10 μM IPTG-induced culture of
B. subtilis 168 (pHT43mtg) with different inducing times (2,
12, 24, and 48 h) were collected and purified. As shown in
Fig. 2c, a protein band of with a molecular weight equivalent
to the calculated mass (47.1 kDa) of SPamyQ-MTG-6His was
detected in three of four samples indicating the successful
secretion of SPamyQ-MTG-6His in B. subtilis. Compared to
samples with 2, 24, and 48 h of inducing time, the sample
with 12 h inducing time produce most SPamyQ-MTG-6His
(1.5/1.1 times of that of 24 h/48 h samples) (P < 0.01) while
no protein was detected after 2 h of induction (Fig. 2d). The
inducing concentration of IPTGwas also optimized. Figure 2e
showed that after 12 h of induction, the secretion of soluble
SPamyQ-MTG-6His was improved efficiently, with concentra-
tions of inducer increasing from 10 to 80 μM, while the sam-
ple induced by 120 μM IPTG did not continue this tendency
only producing around 65% of that of sample induced by
80 μM IPTG (Fig. 2f).

Expression of MTG-6His slightly affects growth
of B. subtilis

To explore the impact of expression of SP-MTG-6His imposed
on the growth of B. subtilis, growth curves of B. subtilis 168
strains harboring no vector or four different vectors (pMA5,
pMA5mtg, pHT43, and pHT43mtg) were investigated. As shown
in Fig. 3, growth curves of B. subtilis 168 (pMA5) and B. subtilis
168 (pHT43) almost coincided with that of B. subtilis 168 indi-
cating that either pMA5 or pHT43 does not affect the growth of
B. subtilis 168. Unlike strains harboring other vectors, B. subtilis
168 (pMA5mtg) had a lower growth profile during the exponen-
tial phase. After reaching stationary phase, the values of OD600 of
all samples stabilized around 2.4 (Fig. 3).

SPwapA-MTG-6His and SPamyQ-MTG-6His produced
by B. subtilis keep good activity after proteolysis

Two hundred microgram per milliliter of trypsin was used to
digest both SPwapA-MTG-6His and SPamyQ-MTG-6His.
Figure 4 showed that there is one band corresponding to the
theoretical molecular weight (38.9 kDa) ofMTG-6His appearing
in the lanes of digested, indicating both SPwapA-MTG-6His and
SPamyQ-MTG-6His were fully digested by trypsin to generate
mature MTG-6His. The concentration of B. subtilis-produced
MTG-6His was tested up to 63.0 ± 0.6 mg/L from SPwapA-
MTG-6His and 54.1 ± 0.3 mg/L from SPamyQ-MTG-6His (Fig.
4c). The specific activities of B. subtilis-produced MTG-6His
were tested with Z-Gln-Gly as a substrate, and the results were
shown in Fig. 4c, after proteolysis by trypsin, mature MTG was
tested to have the enzymatic ability of 27.0 ± 0.4 U/mg from
SPwapA-MTG-6His and 29.6 ± 0.9 U/mg from SPamyQ-MTG-
6His. The measured activities of MTG-6His were relatively
equal to what was reported previously (Salis et al. 2015).

Crosslinking of SPI

To further test the enzymatic activity of B. subtilis-produced
MTG-6His, an SPI crosslinking test was performed. MTG-
6His digested from both SPwapA-MTG-6His and SPamyQ-
MTG-6His were incubated with 1% (w/v) SPI solution at
5:50 (v/v) for different time intervals (30, 60, and 120 min)
at 37 °C. The crosslinking was verified by production of high
molecular weight products at the top of both the stacking gel
and the separating gel, in addition to the disappearance of the
β-conglycinin and acidic subunit glycinin protein bands in the
middle of the separating gel (Fig. 5). SPI could not be
crosslinked linked when signal peptide (SPwapA/SPamyQ) and
pro-region were not removed (lane II, Fig. 5a) confirming that
the crosslinking was catalyzed by the mature MTG-6His.
Compared to commercial MTG (lane VI, Fig. 5a), MTG-
6His produced by B. subtilis crosslinked the SPI with even
more intensive extent.
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Discussion

Previously, MTG of S. mobaraensis had been secreted by
Corynebacterium glutamicum through the Sec machinery
with the signal peptide of CspB of C. glutamicum

integrated in front of MTG (Kikuchi et al. 2003). In our
study, SPwapA, a native B. subtilis twin-arginine signal
peptide, was proven to direct the transportation of MTG
of S. mobaraensis out from B. subtilis implying MTG
could be secreted through the Tat pathway as well (Ling

Fig. 2 SDS-PAGE analysis of SP-MTG-6His from B. subtilis strains. B.
S. B. subtilis, MWmolecular weight. a Purified SPwapA-MTG-6His from
B. subtilis strains (pMA5mtg) with fermentation time of 12, 24, and 48 h;
Purification from B. subtilis 168 (pMA5) with fermentation time of 48 h
was treated as control. b. The relative quantities of SPwapA-MTG-6His
from B. subtilis strains (pMA5mtg) with different fermentation times were
estimated with Bandscan software. c Purified SPamyQ-MTG-6His from
10 μM IPTG-induced culture of B. subtilis 168 (pHT43mtg) with different
inducing times (2, 12, 24, and 48 h). d The relative quantities of SPamyQ-

MTG-6His from 10 μM-IPTG-induced culture of B. subtilis 168
(pHT43mtg) with different inducing times (12, 24, and 48 h) were
estimated with Bandscan software. e. Purified SPamyQ-MTG-6His from
the culture of B. subtilis 168 (pHT43mtg) with 12-h cultivation and
different concentrations of IPTG as inducer. f The relative quantities of
SPamyQ-MTG-6His from the culture of B. subtilis 168 (pHT43mtg) with
12-h cultivation and different concentrations of IPTG as inducer were
estimated with Bandscan software. Values with different letters above
the error bars are significantly different at P < 0.01 in the ANOVA test
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et al. 2007; Zhang et al. 2013). There are several publica-
tions demonstrating the effective transport capacity of the
signal peptide of AmyQ from Bacillus amyloliquefaciens
in B. subtilis (Guo et al. 2014; Phan et al. 2006).

Similarly, in this study, SPamyQ is shown to secret MTG
up to 54.1 ± 0.3 mg/L from B. subtilis. Compared to
SPwapA, SPamyQ directed slightly lower secretion of MTG
of S. mobaraensis out from B. subtilis, which might be
explained by that a native signal peptide has a better
transporting capability in B. subtilis and/or because this
will direct secretion via the Sec pathway, which might be
less effective than the Tat pathway for this protein.

B. subtilis WB600 deficient in six extracellular prote-
ases (neutral protease A/subtilisin/extracellular protease/
metalloprotease/bacillopeptidase F/neutral protease B) was
developed to improve the quality and quantity of the se-
creted foreign proteins (Wu et al. 1991). However, in our
study, no significant difference in MTG production was
observed between B. subtilis 168 and B. subtilis WB600
indicating that MTG is most probably not digested by the
six endogenous extracellular proteases/peptidases in
B. subtilis, although many foreign proteins were reported
to be susceptible to them. According to (Kikuchi et al.
2003), subtilisin-like protease SAM-P45 was able to hy-
drolyze MTG at Ser41. Subtilisin shared high homology
with SAM-P45 particularly in regions around the active
sites meaning residues outside of this area might play

Fig. 4 Analysis of digested SP-MTG-6His. MW molecular weight. a
Samples from B. subtilis 168 (pMA5mtg). b Samples from B. subtilis
168 (pHT43mtg). c Concentration and enzyme activity of B. subtilis-

produced MTG-6His. I. protein from the supernatant, II. protein without
trypsin digestion, and III. protein activated with terminal concentration of
200 μg/ml trypsin

Fig. 3 Growth curves of different kinds of transformed B. subtilis 168
strains at 37 °C in a continuously shanking flask. B. S. B. subtilis
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critical role in digesting MTG (Suzuki et al. 1997;
Taguchi et al. 2002).

Expression of SPwapA-MTG-6His by constitutive promot-
er PhpaII affected the growth of the host strain negatively.
This might be because much energy which should be sup-
plied for regular cell metabolism is used for production of
SPwapA-MTG-6His while in the case of SPamyQ-MTG-6His,
this process was buffered by using the inducible promoter
Plac, which was initiated at the middle of exponential
phase. Similar results have been observed before. When
GFP was under the control of inducible promoter PnisA
/PczcD, the induction of GFP did not affect the growth pro-
file of host strains (Mu et al. 2013).

The SPI crosslinking experiment has proven the usefull
activity of MTG produced by B. subtilis for application.
Although mature MTG derived from SPwapA-MTG-6His
and SPamyQ-MTG-6His share 100% homology (not consid-
ering 6His tail) with commercial MTG, more intensive
bands remained in the sample (lane VI, Fig. 5a) treated
by commercial MTG. This might be caused by the incom-
plete proteolysis of pro-region for commercial MTG as
observed in lane VII of Fig. 5a.

In this work, S. mobaraensis MTG has been for the
first time secreted successfully from two systems by
using B. subtilis as a host strain. The productivity of
active MTG reached 63.0 ± 0.6 mg/L. Considering
B. subtilis as the most widely used Gram-positive plat-
form for protein engineering, our work provides the
potential toolbox to engineer designed MTGs in the fu-
ture research with an easy purification process. We
demonstrate that B. subtilis has great potential as a host
for the industrial production of MTG heterologous
proteins.
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