90 research outputs found

    Joint Depth Estimation and Mixture of Rain Removal From a Single Image

    Full text link
    Rainy weather significantly deteriorates the visibility of scene objects, particularly when images are captured through outdoor camera lenses or windshields. Through careful observation of numerous rainy photos, we have found that the images are generally affected by various rainwater artifacts such as raindrops, rain streaks, and rainy haze, which impact the image quality from both near and far distances, resulting in a complex and intertwined process of image degradation. However, current deraining techniques are limited in their ability to address only one or two types of rainwater, which poses a challenge in removing the mixture of rain (MOR). In this study, we propose an effective image deraining paradigm for Mixture of rain REmoval, called DEMore-Net, which takes full account of the MOR effect. Going beyond the existing deraining wisdom, DEMore-Net is a joint learning paradigm that integrates depth estimation and MOR removal tasks to achieve superior rain removal. The depth information can offer additional meaningful guidance information based on distance, thus better helping DEMore-Net remove different types of rainwater. Moreover, this study explores normalization approaches in image deraining tasks and introduces a new Hybrid Normalization Block (HNB) to enhance the deraining performance of DEMore-Net. Extensive experiments conducted on synthetic datasets and real-world MOR photos fully validate the superiority of the proposed DEMore-Net. Code is available at https://github.com/yz-wang/DEMore-Net.Comment: 11 pages, 7 figures, 5 table

    GeoSegNet: Point Cloud Semantic Segmentation via Geometric Encoder-Decoder Modeling

    Full text link
    Semantic segmentation of point clouds, aiming to assign each point a semantic category, is critical to 3D scene understanding.Despite of significant advances in recent years, most of existing methods still suffer from either the object-level misclassification or the boundary-level ambiguity. In this paper, we present a robust semantic segmentation network by deeply exploring the geometry of point clouds, dubbed GeoSegNet. Our GeoSegNet consists of a multi-geometry based encoder and a boundary-guided decoder. In the encoder, we develop a new residual geometry module from multi-geometry perspectives to extract object-level features. In the decoder, we introduce a contrastive boundary learning module to enhance the geometric representation of boundary points. Benefiting from the geometric encoder-decoder modeling, our GeoSegNet can infer the segmentation of objects effectively while making the intersections (boundaries) of two or more objects clear. Experiments show obvious improvements of our method over its competitors in terms of the overall segmentation accuracy and object boundary clearness. Code is available at https://github.com/Chen-yuiyui/GeoSegNet

    Disruption of Retinoic Acid Receptor Alpha Reveals the Growth Promoter Face of Retinoic Acid

    Get PDF
    Retinoic acid (RA), the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the RA-receptors (RARs), exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha, RARalpha, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol. Cell. Biol., 2005, 25:10591). The objective of this study was to investigate whether RA can differentially govern cell growth, in the presence and absence of RARalpha, through differential regulation of the "rheostat" comprising ceramide (CER), the sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P), the sphingolipid with prosurvival activity.We found that functional inhibition of endogenous RARalpha in breast cancer cells by using either RARalpha specific antagonists or a dominant negative RARalpha mutant hampers on one hand the RA-induced upregulation of neutral sphingomyelinase (nSMase)-mediated CER synthesis, and on the other hand the RA-induced downregulation of sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-mediated activation of the SK1-S1P signaling.In the presence of functional RARalpha, RA inhibits cell growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARalpha, RA-in a non-RAR-mediated fashion-promotes cell growth by activating the prosurvival S1P signaling. These two distinct, yet integrated processes apparently concur to the growth-promoter effects of RA

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    A Spatial Adaptive Algorithm Framework for Building Pattern Recognition Using Graph Convolutional Networks

    No full text
    Graph learning methods, especially graph convolutional networks, have been investigated for their potential applicability in many fields of study based on topological data. Their topological data processing capabilities have proven to be powerful. However, the relationships among separate entities include not only topological adjacency, but also correlation in vision, for example, the spatial vector data of buildings. In this study, we propose a spatial adaptive algorithm framework with a data-driven design to accomplish building group division and building group pattern recognition tasks, which is not sensitive to the difference in the spatial distribution of the buildings in various geographical regions. In addition, the algorithm framework has a multi-stage design, and processes the building group data from whole to parts, since the objective is closely related to multi-object detection on topological data. By using the graph convolution method and a deep neural network (DNN), the multitask model in this study can learn human thoughts through supervised training, and the whole process only depends upon the descriptive vector data of buildings without any ancillary data for building group partition. Experiments confirmed that the method for expressing buildings and the effect of the algorithm framework proposed are satisfactory. In summary, using deep learning methods to complete the tasks of building group division and building group pattern recognition is potentially effective, and the algorithm framework is worth further research

    Robust Structural Damage Detection Using Analysis of the CMSE Residual’s Sensitivity to Damage

    No full text
    This paper presents a robust damage identification scheme in which damage is predicted by solving the cross-modal strain energy (CMSE) linear system of equations. This study aims to address the excessive equations issue faced in the assemblage of the CMSE system. A sensitivity index that, to some extent, measures how the actual damage level vector satisfies each CMSE equation, is derived by performing an analysis of the defined residual’s sensitivity to damage. The index can be used to eliminate redundant equations and enhance the robustness of the CMSE system. Moreover, to circumvent a potentially ill-conditioned problem, a previously published iterative Tikhonov regularization method is adopted to solve the CMSE system. Some improvements to this method for determining the iterative regularization parameter and regularization operator are given. The numerical robustness of the proposed damage identification scheme against measurement noise is proved by analyzing a 2-D truss structure. The effects of location and extent of damage on the damage identification results are investigated. Furthermore, the feasibility of the proposed scheme for damage identification is experimentally validated on a beam structure

    NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction

    No full text
    In recent years, more and more researchers have used deep learning methods for super-resolution reconstruction and have made good progress. However, most of the existing super-resolution reconstruction models generate low-resolution images for training by downsampling high-resolution images through bicubic interpolation, and the models trained from these data have poor reconstruction results on real-world low-resolution images. In the field of unmanned aerial vehicle (UAV) aerial photography, the use of existing super-resolution reconstruction models in reconstructing real-world low-resolution aerial images captured by UAVs is prone to producing some artifacts, texture detail distortion and other problems, due to compression and fusion processing of the aerial images, thereby resulting in serious loss of texture detail in the obtained low-resolution aerial images. To address this problem, this paper proposes a novel dense generative adversarial network for real aerial imagery super-resolution reconstruction (NDSRGAN), and we produce image datasets with paired high- and low-resolution real aerial remote sensing images. In the generative network, we use a multilevel dense network to connect the dense connections in a residual dense block. In the discriminative network, we use a matrix mean discriminator that can discriminate the generated images locally, no longer discriminating the whole input image using a single value but instead in chunks of regions. We also use smoothL1 loss instead of the L1 loss used in most existing super-resolution models, to accelerate the model convergence and reach the global optimum faster. Compared with traditional models, our model can better utilise the feature information in the original image and discriminate the image in patches. A series of experiments is conducted with real aerial imagery datasets, and the results show that our model achieves good performance on quantitative metrics and visual perception

    An Accelerated Proximal Gradient Algorithm for Singly Linearly Constrained Quadratic Programs with Box Constraints

    No full text
    Recently, the existed proximal gradient algorithms had been used to solve non-smooth convex optimization problems. As a special nonsmooth convex problem, the singly linearly constrained quadratic programs with box constraints appear in a wide range of applications. Hence, we propose an accelerated proximal gradient algorithm for singly linearly constrained quadratic programs with box constraints. At each iteration, the subproblem whose Hessian matrix is diagonal and positive definite is an easy model which can be solved efficiently via searching a root of a piecewise linear function. It is proved that the new algorithm can terminate at an ε-optimal solution within O(1/ε) iterations. Moreover, no line search is needed in this algorithm, and the global convergence can be proved under mild conditions. Numerical results are reported for solving quadratic programs arising from the training of support vector machines, which show that the new algorithm is efficient

    Adaptive Unsupervised-Shadow-Detection Approach for Remote-Sensing Image Based on Multichannel Features

    No full text
    Shadow detection is an essential research topic in the remote-sensing domain, as the presence of shadow causes the loss of ground-object information in real areas. It is hard to define specific threshold values for the identification of shadow areas with the existing unsupervised approaches due to the complexity of remote-sensing scenes. In this study, an adaptive unsupervised-shadow-detection method based on multichannel features is proposed, which can adaptively distinguish shadow in different scenes. First, new multichannel features were designed in the hue, saturation, and intensity color space, and the shadow properties of high hue, high saturation, and low intensity were considered to solve the insufficient feature-extraction problem of shadows. Then, a dynamic local adaptive particle swarm optimization was proposed to calculate the segmentation thresholds for shadows in an adaptive manner. Finally, experiments performed on the Aerial Imagery dataset for Shadow Detection (AISD) demonstrated the superior performance of the proposed approach in comparison with traditional unsupervised shadow-detection and state-of-the-art deep-learning methods. The experimental results show that the proposed approach can detect the shadow areas in remote-sensing images more accurately and efficiently, with the F index being 82.70% on the testing images. Thus, the proposed approach has better application potential in scenarios without a large number of labeled samples

    Adaptive Unsupervised-Shadow-Detection Approach for Remote-Sensing Image Based on Multichannel Features

    No full text
    Shadow detection is an essential research topic in the remote-sensing domain, as the presence of shadow causes the loss of ground-object information in real areas. It is hard to define specific threshold values for the identification of shadow areas with the existing unsupervised approaches due to the complexity of remote-sensing scenes. In this study, an adaptive unsupervised-shadow-detection method based on multichannel features is proposed, which can adaptively distinguish shadow in different scenes. First, new multichannel features were designed in the hue, saturation, and intensity color space, and the shadow properties of high hue, high saturation, and low intensity were considered to solve the insufficient feature-extraction problem of shadows. Then, a dynamic local adaptive particle swarm optimization was proposed to calculate the segmentation thresholds for shadows in an adaptive manner. Finally, experiments performed on the Aerial Imagery dataset for Shadow Detection (AISD) demonstrated the superior performance of the proposed approach in comparison with traditional unsupervised shadow-detection and state-of-the-art deep-learning methods. The experimental results show that the proposed approach can detect the shadow areas in remote-sensing images more accurately and efficiently, with the F index being 82.70% on the testing images. Thus, the proposed approach has better application potential in scenarios without a large number of labeled samples
    • …
    corecore