220 research outputs found

    Influencing factors of cardiovascular adverse events risk in elderly patients with esophageal cancer undergoing video-assisted thoracoscopic surgery and nomogram prediction model construction

    Get PDF
    Background and purpose: The establishment of artificial pneumothorax during video-assisted thoracoscopic surgery may affect the intrathoracic pressure, cause the obstruction of superior vena cava reflux, and lead to the increased risk of adverse cardiovascular events during hospitalization. However, elderly patients with esophageal cancer are more likely to have adverse cardiovascular events during the perioperative period due to the significant decline in functional status, which seriously affects the rehabilitation process. This study aimed to investigate the influencing factors of cardiovascular adverse events risk in elderly patients with esophageal cancer undergoing video-assisted thoracoscopic surgery and construct nomograph model to guide the formulation of clinical intervention plan. Methods: Five hundred and forty-six elderly patients with esophageal cancer undergoing video-assisted thoracoscopic surgery who were treated in The First Hospital of Danjiangkou City were retrospectively chosen in the period from January 2015 to October 2020. All patients were grouped according to the occurrence of cardiovascular adverse events in perioperative period, the related clinical data were analyzed, and the independent influencing factors of cardiovascular adverse events were evaluated by logistic regression model. Based on the above factors, the nomogram prediction model was constructed and receiver operating characteristic (ROC) curve was drawn to evaluate the prediction efficiency of nomogram model. Results: Eighty-four cases (15.38%) had perioperative cardiovascular adverse events in all 546 patients. Univariate analysis showed that American Society of Anesthesiologists (ASA) grade, the number of clinical risk factors, the level of hemodynamic changes, the level of airway pressure and the level of central venous pressure (CVP) were all related to the occurrence of cardiovascular adverse events (P<0.05). Multivariate analysis showed that ASA classification, the number of clinical risk factors, the level of hemodynamic changes and CVP were the independent influencing factors of cardiovascular adverse events (P<0.05). The nomogram prediction model was constructed according to the independent influencing factors of cardiovascular adverse event risk confirmed by multivariate analysis. The area under curve (AUC) of above nomogram model for predicting the risk of cardiovascular adverse events was 0.88 (95% CI: 0.81-0.97), and the sensitivity and specificity were 87.26% and 91.60% respectively. Conclusion: The incidence of cardiovascular adverse events in elderly patients with esophageal cancer undergoing video-assisted thoracoscopic surgery is independently related to many factors, of which ASA grade >Ⅲ, number of clinical risk factors >3, hemodynamic change level ≥30%, airway pressure level >30 cm H2O and CVP level >20 cm H2O have higher risk. The nomogram model based on the above factors has good prediction efficiency and may guide the formulation of clinical intervention programs

    Unconventional polarization switching mechanism in (Hf, Zr)O2 ferroelectrics

    Full text link
    HfO2_{2}-based ferroelectric thin films are promising for their application in ferroelectric devices. Predicting the ultimate magnitude of polarization and understanding its switching mechanism are critical to realize the optimal performance of these devices. Here, a generalized solid-state variable cell nudged elastic band (VCNEB) method is employed to predict the switching pathway associated with domain-wall motion in (Hf, Zr)O2_{2} ferroelectrics. It is found that the polarization reversal pathway, where three-fold coordinated O atoms pass across the nominal unit-cell boundaries defined by the Hf/Zr atomic planes, is energetically more favorable than the conventional pathway where the O atoms do not pass through these planes. This finding implies that the polarization orientation in the orthorhombic Pca21_{1} phase of HfO2_{2} nd its derivatives is opposite to that normally assumed, predicts the spontaneous polarization magnitude of about 70 μ{\mu}C/cm2^{2} that is nearly 50% larger than the commonly accepted value, signifies a positive intrinsic longitudinal piezoelectric coefficient, and suggests growth of ferroelectric domains, in response to an applied electric field, structurally reversed to those usually anticipated. These results provide important insights into the understanding of ferroelectricity in HfO2_{2}-based ferroelectrics.Comment: 34 pages, 28 figure

    Iron in Micronutrient Powder Promotes an Unfavorable Gut Microbiota in Kenyan Infants

    Get PDF
    Iron supplementation may have adverse health effects in infants, probably through manipulation of the gut microbiome. Previous research in low-resource settings have focused primarily on anemic infants. This was a double blind, randomized, controlled trial of home fortification comparing multiple micronutrient powder (MNP) with and without iron. Six-month-old, non- or mildly anemic, predominantly-breastfed Kenyan infants in a rural malaria-endemic area were randomized to consume: (1) MNP containing 12.5 mg iron (MNP+Fe, n = 13); (2) MNP containing no iron (MNP−Fe, n = 13); or (3) Placebo (CONTROL, n = 7), from 6–9 months of age. Fecal microbiota were profiled by high-throughput bacterial 16S rRNA gene sequencing. Markers of inflammation in serum and stool samples were also measured. At baseline, the most abundant phylum was Proteobacteria (37.6% of rRNA sequences). The proteobacterial genus Escherichia was the most abundant genus across all phyla (30.1% of sequences). At the end of the intervention, the relative abundance of Escherichia significantly decreased in MNP−Fe (−16.05 ± 6.9%, p = 0.05) and CONTROL (−19.75 ± 4.5%, p = 0.01), but not in the MNP+Fe group (−6.23 ± 9%, p = 0.41). The second most abundant genus at baseline was Bifidobacterium (17.3%), the relative abundance of which significantly decreased in MNP+Fe (−6.38 ± 2.5%, p = 0.02) and CONTROL (−8.05 ± 1.46%, p = 0.01), but not in MNP-Fe (−4.27 ± 5%, p = 0.4445). Clostridium increased in MNP-Fe only (1.9 ± 0.5%, p = 0.02). No significant differences were observed in inflammation markers, except for IL-8, which decreased in CONTROL. MNP fortification over three months in non- or mildly anemic Kenyan infants can potentially alter the gut microbiome. Consistent with previous research, addition of iron to the MNP may adversely affect the colonization of potential beneficial microbes and attenuate the decrease of potential pathogens

    Liao ning virus in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liao ning virus is in the genus Seadornavirus within the family Reoviridae and has a genome composed of 12 segments of double-stranded RNA (dsRNA). It is transmitted by mosquitoes and only isolated in China to date and it is the only species within the genus Seadornavirus which was reported to have been propagated in mammalian cell lines. In the study, we report 41 new isolates from northern and southern Xinjiang Uygur autonomous region in China and describe the phylogenetic relationships among all 46 Chinese LNV isolates.</p> <p>Findings</p> <p>The phylogenetic analysis indicated that all the isolates evaluated in this study can be divided into 3 different groups that appear to be related to geographic origin based on partial nucleotide sequence of the 10th segment which is predicted to encode outer coat proteins of LNV. Bayesian coalescent analysis estimated the date of the most recent common ancestor for the current Chinese LNV isolates to be 318 (with a 95% confidence interval of 30-719) and the estimated evolutionary rates is 1.993 × 10<sup>-3 </sup>substitutions per site per year.</p> <p>Conclusions</p> <p>The results indicated that LNV may be an emerging virus at a stage that evaluated rapidly and has been widely distributed in the north part of China.</p

    Liao ning virus in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liao ning virus is in the genus Seadornavirus within the family Reoviridae and has a genome composed of 12 segments of double-stranded RNA (dsRNA). It is transmitted by mosquitoes and only isolated in China to date and it is the only species within the genus Seadornavirus which was reported to have been propagated in mammalian cell lines. In the study, we report 41 new isolates from northern and southern Xinjiang Uygur autonomous region in China and describe the phylogenetic relationships among all 46 Chinese LNV isolates.</p> <p>Findings</p> <p>The phylogenetic analysis indicated that all the isolates evaluated in this study can be divided into 3 different groups that appear to be related to geographic origin based on partial nucleotide sequence of the 10th segment which is predicted to encode outer coat proteins of LNV. Bayesian coalescent analysis estimated the date of the most recent common ancestor for the current Chinese LNV isolates to be 318 (with a 95% confidence interval of 30-719) and the estimated evolutionary rates is 1.993 × 10<sup>-3 </sup>substitutions per site per year.</p> <p>Conclusions</p> <p>The results indicated that LNV may be an emerging virus at a stage that evaluated rapidly and has been widely distributed in the north part of China.</p

    MiR-185 Targets the DNA Methyltransferases 1 and Regulates Global DNA Methylation in human glioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perturbation of DNA methylation is frequent in cancers and has emerged as an important mechanism involved in tumorigenesis. To determine how DNA methylation is modified in the genome of primary glioma, we used Methyl-DNA immunoprecipitation (MeDIP) and Nimblegen CpG promoter microarrays to identify differentially DNA methylation sequences between primary glioma and normal brain tissue samples.</p> <p>Methods</p> <p>MeDIP-chip technology was used to investigate the whole-genome differential methylation patterns in glioma and normal brain tissues. Subsequently, the promoter methylation status of eight candidate genes was validated in 40 glioma samples and 4 cell lines by Sequenom's MassARRAY system. Then, the epigenetically regulated expression of these genes and the potential mechanisms were examined by chromatin immunoprecipitation and quantitative real-time PCR.</p> <p>Results</p> <p>A total of 524 hypermethylated and 104 hypomethylated regions were identified in glioma. Among them, 216 hypermethylated and 60 hypomethylated regions were mapped to the promoters of known genes related to a variety of important cellular processes. Eight promoter-hypermethylated genes (ANKDD1A, GAD1, HIST1H3E, PCDHA8, PCDHA13, PHOX2B, SIX3, and SST) were confirmed in primary glioma and cell lines. Aberrant promoter methylation and changed histone modifications were associated with their reduced expression in glioma. In addition, we found loss of heterozygosity (LOH) at the miR-185 locus located in the 22q11.2 in glioma and induction of miR-185 over-expression reduced global DNA methylation and induced the expression of the promoter-hypermethylated genes in glioma cells by directly targeting the DNA methyltransferases 1.</p> <p>Conclusion</p> <p>These comprehensive data may provide new insights into the epigenetic pathogenesis of human gliomas.</p

    Identification and isolation of Genotype-I Japanese Encephalitis virus from encephalitis patients

    Get PDF
    Historically, Japanese Encephalitis virus (JEV) genotype III (GIII) has been responsible for human diseases. In recent years, JEV genotype I (GI) has been isolated from mosquitoes collected in numerous countries, but has not been isolated from patients with encephalitis. In this study, we report recovery of JEV GI live virus and identification of JEV GI RNA from cerebrospinal fluid (CSF) of encephalitis patients in JE endemic areas of China. Whole-genome sequencing and molecular phylogenetic analysis of the JEV isolate from the CSF samples was performed. The isolate in this study is highly similar to other JEV GI strains which isolated from mosquitoes at both the nucleotide and deduced amino acid levels. Phylogenetic analysis based on the genomic sequence showed that the isolate belongs to JEV GI, which is consistent with the phylogenetic analysis based on the pre-membrane (PrM) and Glycoprotein genes. As a conclusion, this is the first time to isolate JEV GI strain from CSF samples of encephalitis patients, so continuous survey and evaluate the infectivity and pathogenecity of JEV GI strains are necessary, especially for the JEV GI strains from encephalitis patients. With respect to the latter, because all current JEV vaccines (live and inactivated are derived from JEV GIII strains, future studies should be aimed at investigating and monitoring cross-protection of the human JEV GI isolates against widely used JEV vaccines
    corecore