79 research outputs found

    Responses of seasonal indicators to extreme droughts in southwest China

    Get PDF
    Significant impact of extreme droughts on human society and ecosystem has occurred in many places of the world, for example, Southwest China (SWC). Considerable research concentrated on analyzing causes and effects of droughts in SWC, but few studies have examined seasonal indicators, such as variations of surface water and vegetation phenology. With the ongoing satellite missions, more and more earth observation data become available to environmental studies. Exploring the responses of seasonal indicators from satellite data to drought is helpful for the future drought forecast and management. This study analyzed the seasonal responses of surface water and vegetation phenology to drought in SWC using the multi-source data including Seasonal Water Area (SWA), Permanent Water Area (PWA), Start of Season (SOS), End of Season (EOS), Length of Season (LOS), precipitation, temperature, solar radiation, evapotranspiration, the Palmer Drought Severity Index (PDSI), the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), Gross Primary Productivity (GPP) and data from water conservancy construction. The results showed that SWA and LOS effectively revealed the development and recovery of droughts. There were two obvious drought periods from 2000 to 2017. In the first period (from August 2003 to June 2007), SWA decreased by 11.81% and LOS shortened by 5 days. They reduced by 21.04% and 9 days respectively in the second period (from September 2009 to June 2014), which indicated that there are more severe droughts in the second period. The SOS during two drought periods delayed by 3~6 days in spring, while the EOS advanced 1~3 days in autumn. All of PDSI, SWA and LOS could reflect the period of droughts in SWC, but the LOS and PDSI were very sensitive to the meteorological events, such as precipitation and temperature, while the SWA performed a more stable reaction to drought and could be a good indicator for the drought periodicity. This made it possible for using SWA in drought forecast because of the strong correlation between SWA and drought. Our results improved the understanding of seasonal responses to extreme droughts in SWC, which will be helpful to the drought monitoring and mitigation for different seasons in this ecologically fragile region

    Research Evidence on High-Fat Diet-Induced Prostate Cancer Development and Progression

    Get PDF
    Although recent evidence has suggested that a high-fat diet (HFD) plays an important role in prostate carcinogenesis, the underlying mechanisms have largely remained unknown. This review thus summarizes previous preclinical studies that have used prostate cancer cells and animal models to assess the impact of dietary fat on prostate cancer development and progression. Large variations in the previous studies were found during the selection of preclinical models and types of dietary intervention. Subcutaneous human prostate cancer cell xenografts, such as LNCaP, LAPC-4, and PC-3 and genetic engineered mouse models, such as TRAMP and Pten knockout, were frequently used. The dietary interventions had not been standardized, and distinct variations in the phenotype were observed in different studies using distinct HFD components. The use of different dietary components in the research models is reported to influence the effect of diet-induced metabolic disorders. The proposed underlying mechanisms for HFD-induced prostate cancer were divided into (1) growth factor signaling, (2) lipid metabolism, (3) inflammation, (4) hormonal modulation, and others. A number of preclinical studies proposed that dietary fat and/or obesity enhanced prostate cancer development and progression. However, the relationship still remains controversial, and care should be taken when interpreting the results in a human context. Future studies using more sophisticated preclinical models are imperative in order to explore deeper understanding regarding the impact of dietary fat on the development and progression of prostate cancer

    Macrophage inhibitory cytokine-1 induced by a high-fat diet promotes prostate cancer progression by stimulating tumor-promoting cytokine production from tumor stromal cells

    Get PDF
    Background Recent studies have indicated that a high-fat diet (HFD) and/or HFD-induced obesity may influence prostate cancer (PCa) progression, but the role of HFD in PCa microenvironment is unclear. This study aimed to delineate the molecular mechanisms of PCa progression under HFD milieus and define the stromal microenvironment focusing on macrophage inhibitory cytokine-1 (MIC-1) activation. Methods We investigated the effects of HFD on PCa stromal microenvironment and MIC-1 signaling activation using PC-3M-luc-C6 PCa model mice fed with HFD or control diet. Further, we explored the effect of periprostatic adipocytes derived from primary PCa patients on activation and cytokine secretion of prostate stromal fibroblasts. Expression patterns and roles of MIC-1 signaling on human PCa stroma activation and progression were also investigated. Results HFD stimulated PCa cell growth and invasion as a result of upregulated MIC-1 signaling and subsequently increased the secretion of interleukin (IL)-8 and IL-6 from prostate stromal fibroblasts in PC-3M-luc-C6 PCa mouse model. In addition, periprostatic adipocytes directly stimulated MIC-1 production from PC-3 cells and IL-8 secretion in prostate stromal fibroblasts through the upregulation of adipose lipolysis and free fatty acid release. The increased serum MIC-1 was significantly correlated with human PCa stroma activation, high serum IL-8, IL-6, and lipase activity, advanced PCa progression, and high body mass index of the patients. Glial-derived neurotrophic factor receptor alpha-like (GFRAL), a specific receptor of MIC-1, was highly expressed in both cytoplasm and membrane of PCa cells and surrounding stromal fibroblasts, and the expression level was decreased by androgen deprivation therapy and chemotherapy. Conclusion HFD-mediated activation of the PCa stromal microenvironment through metabolically upregulated MIC-1 signaling by increased available free fatty acids may be a critical mechanism of HFD and/or obesity-induced PCa progression

    Prognostic value of plasminogen activator inhibitor-1 in biomarker exploration using multiplex immunoassay in patients with metastatic renal cell carcinoma treated with axitinib

    Get PDF
    Background and AimsVascular endothelial growth factor-directed therapies play a significant role in patients with metastatic renal cell carcinoma (mRCC). Biomarkers for predicting treatment efficacy and resistance are required to develop personalized medicine. We evaluated multiple serum cytokine levels in patients with mRCC treated with axitinib to explore predictive biomarkers. MethodsFrom September 2012 to October 2015, serum samples were collected from 44 patients with mRCC before treatment and 4weeks after axitinib initiation. Bio-Plex Pro Human Cancer Biomarker Panels 1 and 2 were used to measure levels of 34 serum biomarkers related to angiogenesis and cell proliferation. ResultsPatients with partial response or stable disease had significantly decreased serum plasminogen activator inhibitor-1 (PAI-1) level from pre-treatment to 4weeks after axitinib initiation compared with those with progressive disease (P = .022). The median progression-free survival (PFS) and median overall survival (OS) in patients with increased serum PAI-1 level from pre-treatment to 4weeks after axitinib initiation were significantly shorter than those with decreased serum PAI-1 level (P = .027 and P = .026, respectively). Increased serum PAI-1 level from pre-treatment to 4weeks after axitinib initiation was an independent prognostic marker for shorter PFS and OS in multivariate analyses (P = .015 and P = .032, respectively). The immunohistochemical staining intensity of PAI-1 in tumor specimens was significantly associated with Fuhrman grade and presence of distant metastasis (P = .026 and P = .010, respectively). ConclusionsThe initial change in serum PAI-1 level in the early stage of axitinib treatment could be a useful prognostic biomarker in patients with mRCC

    Increased fatty acyl saturation of phosphatidylinositol phosphates in prostate cancer progression

    Get PDF
    Phosphoinositides (PIPs) participate in many cellular processes, including cancer progression; however, the metabolic features of PIPs associated with prostate cancer (PCa) are unknown. We investigated PIPs profiles in PTEN-deficient prostate cancer cell lines, human prostate tissues obtained from patients with PCa and benign prostate hyperplasia (BPH) specimens using mass spectrometry. In immortalized normal human prostate PNT1B cells, PTEN deficiency increased phosphatidylinositol tris-phosphate (PIP3) and decreased phosphatidylinositol mono- and bis-phosphate (PIP1 and PIN2 consistent with PTEN\u27s functional role as a PI(3,4,5)P-3 3-phosphatase. In human prostate tissues, levels of total (sum of all acyl variants) phosphatidylinositol (PI) and PIP1 in PCa were significantly higher than in BPH, whereas PIP2 and PIP3 contents were significantly lower than in BPH. PCa patients had significantly higher proportion of PI, PIP1, and PIP2 with 0-2 double bonds in acyl chains than BPH patients. In subgroup analyses based on PCa aggressiveness, mean total levels of PI with 0-2 double bonds in acyl chains were significantly higher in patients with pathological stage T3 than in those with pathological stage T2. These data indicate that alteration of PIPs level and the saturation of acyl chains may be associated with the development and aggressiveness of prostate cancer, although it is unknown whether this alteration is causative

    The impact of obesity and adiponectin signaling in patients with renal cell carcinoma: A potential mechanism for the obesity paradox

    Get PDF
    Although obesity increases the risk of renal cell carcinoma (RCC), obese patients with RCC experience longer survival than non-obese patients. However, the mechanism of this obesity paradox is unknown. We examined the impact of preoperative BMI, serum total adiponectin (sAd) level, total adiponectin secretion from perinephric adipose tissue, and intratumoral expression of adiponectin receptors on RCC aggressiveness and survival. We also investigated the mechanism underlying enhanced cancer aggressiveness in RCC cells stimulated with exogenous adiponectin. Overweight and obese patients had significantly lower grade cancers than normal patients in all patients and in those without metastasis (p = 0.003 and p = 0.027, respectively). Cancer-specific survival was significantly longer in overweight and obese patients than in normal patients in all patients (p = 0.035). There was a weak inverse correlation between sAd level and BMI in RCC patients (r = -0.344, p = 0.002). Tumor size was slightly correlated with sAd level, and high sAd was significantly associated with poor overall survival rates in patients with non-metastatic RCC (p = 0.035). Adiponectin levels in perinephric adipose tissue and intratumoral AdipoRl/R2 expression were not correlated with RCC aggressiveness or survival. Proliferation significantly increased in 786-0 and Caki-2 cells exposed to exogenous adiponectin, whereas cell invasion and migration were unaffected. In addition, exogenous adiponectin significantly inhibited starvation-and metformin-induced apoptosis, and up-regulated p-AMPK and Bcl-xL levels. In summary, low BMI and high adiponectin levels are associated with aggressive cell behaviors and poor survival in surgically-treated RCC patients. The effects of adiponectin on proliferation and apoptosis might underlie the obesity paradox of RCC

    Specific Gut Microbial Environment in Lard Diet-Induced Prostate Cancer Development and Progression

    Get PDF
    Lard diet (LD) is a risk factor for prostate cancer (PCa) development and progression. Two immunocompetent mouse models fed with isocaloric specific fat diets (LD) enriched in saturated and monounsaturated fatty acid (SMFA), showed significanftly enhanced PCa progression with weight gain compared with a fish oil diet (FOD). High gut microbial divergency resulted from difference in diets, and the abundance of several bacterial species, such as in the orders Clostridiales and Lactobacillales, was markedly altered in the feces of LD- or FOD-fed mice. The proportion of the order Lactobacillales in the gut was negatively involved in SMFA-induced body weight gain and PCa progression. We found the modulation of lipid metabolism and cholesterol biosynthesis pathways with three and seven commonly up- and downregulated genes in PCa tissues, and some of them correlated with the abundance of the order Lactobacillales in mouse gut. The expression of sphingosine 1-phosphate receptor 2, which is associated with the order Lactobacillales and cancer progression in mouse models, was inversely associated with aggressive phenotype and weight gain in patients with PCa using the NCBI Gene Expression Omnibus database. Therefore, SMFA may promote PCa progression with the abundance of specific gut microbial species and overexpression of lipogenic genes in PCa. Therapeutics with alteration of gut microbiota and candidate genes involved in diet-induced PCa progression may be attractive in PCa

    Land use change and climate variation in the Three Gorges Reservoir Catchment from 2000 to 2015 based on the Google Earth Engine

    Get PDF
    Possible environmental change and ecosystem degradation have received increasing attention since the construction of Three Gorges Reservoir Catchment (TGRC) in China. The advanced Google Earth Engine (GEE) cloud-based platform and the large number of Geosciences and Remote Sensing datasets archived in GEE were used to analyze the land use and land cover change (LULCC) and climate variation in TGRC. GlobeLand30 data were used to evaluate the spatial land dynamics from 2000 to 2010 and Landsat 8 Operational Land Imager (OLI) images were applied for land use in 2015. The interannual variations in the Land Surface Temperature (LST) and seasonally integrated normalized difference vegetation index (SINDVI) were estimated using Moderate Resolution Imaging Spectroradiometer (MODIS) products. The climate factors including air temperature, precipitation and evapotranspiration were investigated based on the data from the Global Land Data Assimilation System (GLDAS). The results indicated that from 2000 to 2015, the cultivated land and grassland decreased by 2.05% and 6.02%, while the forest, wetland, artificial surface, shrub land and waterbody increased by 3.64%, 0.94%, 0.87%, 1.17% and 1.45%, respectively. The SINDVI increased by 3.209 in the period of 2000-2015, while the LST decreased by 0.253 °C from 2001 to 2015. The LST showed an increasing trend primarily in urbanized area, with a decreasing trend mainly in forest area. In particular, Chongqing City had the highest LST during the research period. A marked decrease in SINDVI occurred primarily in urbanized areas. Good vegetation areas were primarily located in the eastern part of the TGRC, such as Wuxi County, Wushan County, and Xingshan County. During the 2000–2015 period, the air temperature, precipitation and evapotranspiration rose by 0.0678 °C/a, 1.0844 mm/a, and 0.4105 mm/a, respectively. The climate change in the TGRC was influenced by LULCC, but the effect was limited. What is more, the climate change was affected by regional climate change in Southwest China. Marked changes in land use have occurred in the TGRC, and they have resulted in changes in the LST and SINDVI. There was a significantly negative relationship between LST and SINDVI in most parts of the TGRC, especially in expanding urban areas and growing forest areas. Our study highlighted the importance of environmental protection, particularly proper management of land use, for sustainable development in the catchment
    corecore