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Abstract 

Gross primary productivity (GPP) is very important in the global carbon cycle. 

Currently, the newly released estimates of 8-day GPP at 500-m spatial resolution 

(Collection 6) are provided by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Land Science Team for the global land surface via the improved light use 

efficiency (LUE) model. However, few studies have evaluated its performance. In this 

study, the MODIS GPP products (GPPMOD) were compared with the observed GPP 

(GPPEC) values from site-level eddy covariance measurements over seven maize flux 

sites in different areas around the world. The results indicate that the annual GPPMOD 

was underestimated by 6% - 58% across sites. Nevertheless, after incorporating the 

parameters of the calibrated LUE, the measurements of meteorological variables and 

the reconstructed Fractional Photosynthetic Active Radiation (FPAR) into the GPPMOD 

algorithm in steps, the accuracies of GPPMOD estimates were improved greatly, albeit 

to varying degrees. The differences between the GPPMOD and the GPPEC were primarily 

due to the magnitude of LUE and FPAR. The underestimate of maize cropland LUE 

was a widespread problem which exerted the largest impact on the GPPMOD algorithm. 

In American and European sites, the performance of the FPAR exhibited distinct 

differences in capturing vegetation GPP in growing season due to the canopy 

heterogeneity. In addition, at the DE-Kli site, the GPPMOD abruptly appeared extreme 

low values during the growing season because of the contaminated FPAR from a 

continuous rainy season, which was relevant with the local weather. After correcting 
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the noise of the FPAR, the accuracy of the GPPMOD was improved by approximately 

14%. Therefore, it is crucial to further improve the accuracy of global GPPMOD, 

especially for the maize crop ecosystem, to maintain food security and better understand 

global carbon cycle.  

1   Introduction 

Gross primary productivity (GPP) is important for the global carbon cycle between 

the biosphere and other systems (Lai et al., 2016). It is still a big challenge to accurately 

quantify the global terrestrial GPP at high spatial and temporal resolutions (Zhang et 

al., 2015). At the ecosystem level, the eddy covariance technique has been widely used 

to measure the exchanges of the CO2, water, and energy between the atmosphere and 

the land surface (Jung et al., 2011). The light use efficiency (LUE), first proposed by 

Monteith (Monteith, 1972), is one of approaches to estimate GPP. With the 

development of geographic information system (GIS) technology, it is increasingly 

easy to use remote sensing (RS) technology to observe the earth and provide continuous 

data for the LUE model. 

 

Since 2000, the Moderate Resolution Imaging Spectroradiometer has provided a new 

way to monitor GPP regularly from space with a spatial resolution of 500m and the 

temporal resolution of 8 days (Running et al., 2004), and provided datasets from 

Collection 4 (C4) to Collection 6 (C6). Compared with C6, there are two main 

problems with the C4 MOD17A2H dataset. Firstly, in some regions with higher 

frequencies of cloud cover, the 8-day Maximum Value Composite (MVC) is still 

contaminated by clouds, yielding incorrect 8-day GPP values. Secondly, the C4 

MOD17A2H dataset fails to account in the algorithm for the mismatched spatial 

resolution between a 1-km Moderate Resolution Imaging Spectroradiometer 

(MODIS) pixel and the corresponding 1°×1.25° meteorological data from the Data 

Assimilation Office (DAO). The C4 MOD17A2H data were then improved for 

Collection 5 (C5) based on the development of the MODIS fraction absorbed 

photosynthetically active radiation (FPAR) and plant maintenance respiration by 

National Aeronautics and Space Administration (NASA) in 2007 (Zhao et al., 2011). 

At present, the C6 of MOD17A2 GPP products have higher quality than the previous 

collections with a spatial resolution from 500 m to 1 km and improvement in the 

maximum LUE of the crop and other parameters in the algorithm. 

 

It is necessary to validate the C6 MODIS GPP (GPPMOD) products with local 

observation (Fu et al., 2012). It is a challenging task to analyze the uncertainly of 

GPPMOD due to the difficulty of direct measurement of GPP (Chen et al., 2015). Eddy 

covariance (EC) flux towers have been increasingly used to measure GPP indirectly by 

partitioning the net ecosystem exchange (NEE) into the ecosystem respiration (ER) 

during the daylight periods. A growing number of flux sites have been used to validate 

the MODIS product (Turner, 2003; He et al., 2010; Fu et al., 2012; Wang et al., 2013; 

Tang et al., 2015). Additionally, the eddy covariance technique has made the calibration 

process of the LUE more feasible than ever before.  
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GPPMOD has been validated in forest (Gebremichael and Barros, 2006; He et al., 

2010), grassland, and cropland (Zhang et al., 2008; Fu et al., 2012; Wang et al., 2013) 

with different biomes across different climate zones, indicating that GPPMOD products 

were overestimated at low productivity sites because of the overestimate of FPAR and 

underestimated at higher productivity sites due to the underestimate of LUE (Fu et al., 

2012). In other words, there is a large underestimate of the GPPMOD due to the 

uncertainty of the maximum LUE and FPAR in some areas. In the GPPMOD algorithm, 

the parameter of LUE, which depends on the simple look-up table approach, is the most 

uncertain component (Running et al., 1999; Wang et al., 2013). In addition, the MODIS 

FPAR is subject to uncertainty because of atmospheric conditions during the satellite 

overpass, view angle geometry, and canopy heterogeneity (Cohen et al., 2003; Fensholt 

et al., 2004). 

 

Crops account for approximately 24% of the earth’s land surface (Peng and Gitelson, 

2011). Maize is one of the primary foods for human and one of the essential fodder for 

animals. Therefore, it is very important to accurately estimate the maize GPP (Gitelson, 

2008). However, few works have validated the maize GPP. Wang et al. (2013) validated 

the GPPMOD product at 4 maize sites in northern China and found that the LUE was the 

primary reason for the underestimate of the GPP.  

 

This study focuses on the validation of the GPPMOD performance on global maize 

cropland and aim to make marked improvement of the accuracy. To acquire the estimate 

of GPPMOD, this study relied on the GPPMOD algorithm driven by the local meteorological 

data and the LUE calibrated by the seven eddy covariance flux towers and reconstructed 

FPAR. The objectives are 1) to assess the performance of the MODIS GPP products in 

maize crops at seven sites around the world; and 2) to identify the parameters 

influencing the regional GPPMOD. 

2   Data and Methods  

2.1. Flux sites   

 

The FLUXNET2015 Dataset provide the GPP product using eddy covariance flux 

tower measurement. In this study, GPP of seven maize sites from the FLUXNET2015 

Dataset around the world were selected (Table 1, Figure 1). More detailed descriptions 

of these sites can be obtained by the websites for Fluxdata (http://fluxnet.fluxdata.org) 

and ChinaFLUX (http://chinaflux.org/index.aspx).  

 

American sites including US-Ne1, US-Ne2 and US-Ne3 are large production fields. 

US-Ne1 and US-Ne2 sites are equipped with center pivot system for irrigation while 

the US-Ne3 site relies on rainfall. The irrigated sites (US-Ne1 and US-Ne2) have a long 

history of more than 10-years of maize-soybean rotation and no-till practice. The rain-

fed site (US-Ne3) has a variable cultivation history with wheat, soybean, oat and maize. 

 

European site of DE-Kli is located 4 km south of the Tharandt Forest in Germany. 

This site has functioned solely as cropland since 1975. The eddy covariance 

measurements started in May 2004. The crop rotation was followed by rapeseed 

(2004/2005), winter wheat (2005/2006), maize (2007), and spring barley (2008). 

European site of FR-Gri lies in a large cropland field in a plateau situation close to a 

http://fluxnet.fluxdata.org/
http://chinaflux.org/index.aspx
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farm with cattle. The crop rotation here was followed by maize (2005), winter wheat 

(2005/2006), and barley (2007). 

 

Asian site of CN_DM is located in typical irrigated farmland in Daman village, 

Gansu Province, Northwest China, with a primary crop of maize (Tang et al., 2017). 

The precipitation in this site is about 100-250 mm every year with continental arid 

climate: dry and hot in summer and cold in winter. Asian site of CN_YC lies in Yucheng 

County, Shangdong Province, North China, with a crop rotation of wheat and maize 

over one year. The annual mean temperature is about 13° C and the annual 

precipitation is approximately 528 mm. 

 

TABLE 1. Characteristics of the study sites. 

 

Site Site name Country Latitude Longitude Data period Reference 

US_Ne1 

Mead - irrigated 

continuous maize site USA 41.1651 

96.4766 

W 2001-2011 (Verma et al., 2005) 

US_Ne2 

Mead - irrigated 

maize-soybean 

rotation site USA 41.1649 

96.4701 

W 2001-2011 (Verma et al., 2005) 

US_Ne3 

Mead - rainfed maize-

soybean rotation site USA 41.1797 

96.4397 

W 2001-2011 
(Verma et al., 2005) 

DE_Kli Klingenberg Germany 50.8929 13.5225 E 2007 

(Gilmanov et al., 

2010) 

FR_Gri Grignon France 48.8442 1.9519 E 2005 (Lehuger et al., 2010) 

CN_YC Yucheng China 36.8333 

116.5667 

E 2012-2013 (Xiao et al., 2009) 

CN_DM Daman China 38.8556 

100.3722 

E 2013-2014 (Wang et al., 2013) 
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FIGURE 1. Locations of seven maize flux tower sites. The global land cover 

classification data were produced by the AVHRR (Hansen et al., 2010).  
 

2.2. MODIS data  

 

 MODIS, the main instrument aboard the Terra Earth Observing System (EOS) 

satellite for monitoring the seasonality of global terrestrial vegetation, was launched on 

18 December 1999. Terra MODIS observes the entire Earth’s surface with a period 

cycle of 1 to 2 days, obtaining data with 36 spectral bands. Beginning in 2000, GPP 

products were provided by the NASA EOS with a temporal resolution of 8 days at 1-

km spatial resolution (Running, 2000). 

 

To evaluate the MOD17-GPP product with eddy covariance flux, the MOD15A2 

and MOD17A2 products were obtained from the EOSDIS 

(http://reverb.echo.nasa.gov). The MOD15A2 data product is the 8-day composites of 

leaf area index (LAI) and FPAR, and the MOD17A2 is the 8-day composites of GPP 

and net primary productivity (NPP). The current version of the above two products, the 

Collection 6 data at a spatial resolution of 500 m, were used in this study. 
 

2.3. MOD17 algorithm 

 

The MOD17A2 products are available by summing up the 8-day GPP. The 

description of the MODIS GPP algorithm was described by Running (2000). The 

algorithm relies on the light use efficiency (ε) (Heinsch et al., 2006) linearly relating 

GPP to the absorbed photosynthetic radiation (APAR) (Monteith, 1972). 

 

εFPARPARGPP         (1)                                              

 

where PAR is the photosynthetically active radiation and FPAR is the fraction of the 

photosynthetic active radiation absorbed by vegetation. Estimates of 8-day mean daily 

FPAR with the spatial resolution of 500 m were provided by the MODIS team 

(Running, 2015). The parameter of ɛ is the LUE for GPP. 
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scal armi nmax VPDTεε s c alar        (2)                                       

 

where εmax is the maximum LUE from the look-up table (Running, 2000), relying on 

vegetation types. Tminscalar and VPDscalar are the scalars for the effects of the minimum 

temperature and vapor pressure deficit on LUE of vegetation, respectively. The 

parameters of VPDmax and VPDmin, Tminmin, Tminmax and εmax can be acquired by the 

biome parameters look-up table (BPLUT) in the user guide of MODIS17. 
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VPD(Pa) is the average vapor pressure deficit. VPDmin is the lower limit value of 

daytime mean vapor pressure deficit; and VPDmax is the upper limit value of daytime 

mean vapor pressure deficit. 

 

2.4. FPAR Reconstruction 

 

The temporal profile of FPAR should be smooth, as the result of the FPAR of the 

canopy changes slowly throughout the year. However, the FPAR from remote sensing 

data sometimes changes abruptly due to the noise of bad weather conditions such as 

clouds, persistent rainy days and fog. To reduce the noise of the contaminated FPAR, a 

time-series reconstructing algorithm called the Savizky_Golay filter (Chen et al., 2004) 

was employed in this study as follows: 










mj

mi
jij

*

i YC
12m

1
Y                                                   (5)    

    

where Y is the original time-series data; Yi
* is the reconstructed time-series data; Cj 

is the jth weight of the filter window; and 2m+1 is the size of filter window (Ma and 

Veroustraete, 2006). 

 

2.5. Calibrating the LUE 

 

According to the LUE model, the parameter of ɛ was calibrated using the following 

formula: 
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-1-1 PARFPARGPPε                                          (6)           

     

where GPP is from the eddy covariance measurements. FPAR is from the MOD15 

product and PAR is estimated from incident shortwave radiation (SWR) multiplied by 

0.45. The maximum ɛ value was defined corresponding to the maximum GPP in the 

growing seasons in equation (6). In addition, the maximum LUE in each site are shown 

in Table 2. 
 

TABLE 2.  The calibrated LUE of seven maize sites. 

 

Site US_Ne1 US_Ne2 US_Ne3 DE_Kli FR_Gri CN_DM CN_YC 

εmax(g C/MJ) 3.31 2.42 3.19 2.17 2.29 2.25 2.25 

 

2.6. Statistical indicator for validation 

 

Three statistical indicators were used to assess the performance of the model 

goodness, including determination coefficient (R2), root mean square error (RMSE) and 

the relative error (RE). They were calculated as follows: 
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     (7)          
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N

1
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                           (8)                

 

100%
GPP

GPP-GPP
RE

E C

 E Cs i m
                                       (9)                    

 

where GPPsim is the GPP calculated using the GPPMOD algorithm; GPPEC is the tower 

measured GPP; the over-bars represent the mean value; and N is the sample number.  

3. Results 

3.1.Validation of MOD17 GPP product 

 

In the American and European sites, the MODIS GPP could not capture the 

beginning of the growing season of the maize. Additionally, there was a large 

underestimation in the MODIS GPP during the growing season in seven maize sites, as 

well as substantial biases in the non-growing seasons in the American and European 

sites (Figure 2). In terms of the overall amount of the GPP, the agreements between 

GPPEC and GPPMOD changed in different sites with an R2 from 0.45 to 0.93 (Figure 3). 
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FIGURE 2. The figure of Simulation meteor_cor(GPPmeteor_cor), Simulation 

LUE_cor(GPPLUE_cor), Simulation FPAR_cor(GPPFPAR_cor), GPPEC, GPPMOD at the 

seven sites. GPPmeteor_cor was calculated using the MODIS_GPP algorithm which was 

driven by the observed meteorological data (PAR, VPD and Tmin), FPAR(MOD15A2), 

and other default parameters; GPPLUE_cor was calculated by the calibrated ε0 values on 

the base of GPPmeteor_cor; GPPFPAR_cor was calculated with the reconstructed FPAR based 

on the GPPLUE_cor; GPPEC was the eddy covariance flux tower observed GPP; and 

GPPMOD was the MODIS GPP. 

  

 
FIGURE 3. The scatter plots between GPPMOD, GPPLUE_cor and GPPEC at seven maize 

eddy flux tower sites.  
 

3.2. Improving MOD17 GPP product  
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To understand the errors of the GPPMOD algorithm, three simulations were conducted. 

In the Simulation meteor_cor, only meteorological data such as PAR, VPD, and T were 

replaced by the observation value from the flux tower and other parameters (FPAR, and 

εmax) were default in the MODIS algorithm. In the Simulation LUE_cor, based on the 

Simulation meteor_cor, LUE was calibrated by the eddy covariance flux tower 

observation. In the Simulation FPAR_cor, based on the Simulation LUE_cor, the 

parameter of FPAR from the MOD15 was reconstructed to reduce the noise. The 

parameter details of the three simulations are shown in  Table 3. 

 

TABLE 3. Parameters used for the improving of MODIS GPP algorithm. 

 

GPP FPAR Meteorology data εmax Tmin_max Tmin_min VPDmax VPDmin 

GPP MOD MOD15 FPAR DAO 1.004 12.02 -8.00 43 6.5 

GPP meteor_cor MOD15 FPAR Surface measure 1.004 12.02 -8.00 43 6.5 

GPP LUE_cor MOD15 FPAR Surface measure Calibrated  12.02 -8.00 43 6.5 

GPPFPAR_cor reconstruction Surface measure Calibrated 12.02 -8.00 43 6.5 

 

Compared with GPPMOD, simulation meteor_cor was replaced by the local 

meteorological data in the MODIS GPP algorithm, which only slightly improved the 

MODIS GPP at seven sites. However, Simulation LUE_cor greatly improved the 

amount of the MODIS GPP by using the ε calibrated by the eddy covariance flux tower 

observation. Meanwhile, the Simulation FPAR_cor could reduce the GPP noise  due 

to the contaminated FPAR in the site of DE-Kli (Figure 4) with GPP improvement from 

1501.9 (g C/m2/year) to 1798.5 (g C/m2/year) and R2 from 0.64 to 0.78. After improving 

the MODIS GPP algorithm step by step, from Simulation meteor_cor and Simulation 

LUE_cor to Simulation FPAR_cor, the amount of GPP increased markedly (Figure 2 

and Table 4) while R2 between the simulation GPP and the observed GPP remains 

unchanged (Figure 3 and Table 5). 

 

From a statistical point of view, the simulation GPPs are indeed overestimated. 

However, concerning the pattern of the whole year, the simulated GPPs perfectly fit EC 

GPPs in the growing season of the maize. In the American and European sites, the 

FPAR was high in the non-growing seasons, which leads to the high amount of the 

simulated GPPs (Figure 2 and Figure 5). The deviation of the FPAR in American and 

European sites may cause the high R2 between the simulated GPP and EC GPP. 

However, there is no deviation in the CD_YC and CD_DM sites, and the R2 is lower 

than those in American and European sites. 
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FIGURE 4. FPAR and reconstructed FPAR (FPAR_SG) at seven flux sites. 

 

 
FIGURE 5 The relationship between the GPPEC, GPPMOD and FPAR at seven 

maize eddy flux tower sites. 
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TABLE 4. Different GPPs from seven maize eddy covariance flux towers. 

 

g C /m2/year US_Ne1 US_Ne2 US_Ne3 DE_Kli FR_Gri CN_DM CN_YC 

GPP MOD 790.9 753.4 782.6 1066.8 933.4 700.8 710.9 

GPPmeteor_cor 880.4 1066.4 814.6 719.8 1170.6 628.9 754.0 

GPPLUE_cor 2793.4 2472.0 2486.8 1501.9 2577.6 1355.4 1689.2 

GPPFPAR_cor 2815.5 2496.8 2496.7 1798.5 2703 1373.0 1706.3 

GPPEC 1707.3 1774.6 1550.3 1133.2 1283.4 1296.9 1676.3 

 

TABLE 5. Statistical indices of different GPPs at seven maize eddy flux tower sites. 

 

Sites 
GPPMOD GPPmeteor_cor GPPLUE_cor GPPFPAR_cor 

RE(%) RMSE R2 RE(%) RMSE R2 RE(%) RMSE R2 RE(%) RMSE R2 

US_Ne1 -53.7 50.3 0.77 -48.4 48.3 0.79 38.9 37.9 0.79 39.4 37.3 0.81 

US_Ne2 -57.5 54.2 0.74 -39.9 40.37 0.90 28.2 26.1 0.90 28.9 25.8 0.91 

US_Ne3 -49.5 48.2 0.76 -47.5 43.7 0.76 37.7 34.9 0.76 37.9 34.8 0.77 

DE_Kli -5.9 24.5 0.43 -36.5 23.0 0.65 24.5 23.1 0.64 36.9 24.3 0.78 

FR_Gri -27.3 33.5 0.43 -8.8 30.3 0.49 50.2 45.94 0.48 52.5 46.8 0.53 

CN_DM -45.9 27.1 0.93 -51.5 27.1 0.97 4.3 6.84 0.97 6.2 6.9 0.97 

CN_YC -57.6 34.7 0.73 -55 32.2 0.76 0.8 18.66 0.76 1.7 16 0.83 

 

4. Discussion 

4.1 Statistical characteristics of carbon fluxes across different regions 

 

This study analyzed the statistical characteristics of carbon fluxes from maize 

croplands in different regions around the world, which provides valuable information 

to evaluate the carbon cycle in maize farmland ecosystems. The largest productivity of 

maize crops appeared in one of the American sites with GPP of 1774.6 g C/m2/year, 

which had the largest mean LUE with the value of 2.97 g C/MJ. The YC site (a special 

explanation) had a mean GPP of 1676.3 g C/m2/year with spring wheat (717.3 g 

C/m2/year) and summer maize (959 g C/m2/year). Deducting the GPP of spring wheat 

from the CN_YC site, the smallest productivity of these maize crop sites was the 

CN_YC site, which was in the continental monsoon climate zone. However, the GPP 

of CN_DM site was slightly higher than that of the DE-Kli site but lower than those of 

US_Ne1, US-Ne1 and US-Ne3.  

 

4.2 The Maximum LUE and its uncertainty in the GPP  

 

The maximum LUE, indicating the potential conversion efficiency of absorbed PAR 

under the ideal vegetation growing condition, has significance in the LUE model in the 

GPP simulation (Xiao et al., 2011). The maximum LUE was considered as a universal 

constant across plant function types in previous models (Potter et al., 1993). In the 

GPPMOD algorithm, the default maximum LUE of crops is 1.044 g C/MJ (Running, 

2015), which contains all types of crops without consideration of C3 and C4. Maize is 

a C4 plant, and its maximum LUE was 2.66 g C/MJ, in the middle stream of the Heihe 

River basin (Wang et al., 2013). The maximum LUE of maize was determined as 
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2.84±0.57 g C/MJ by the flux tower data (Chen et al., 2015). In this study, the mean 

maximum LUE of these seven sites was 2.55 g C/MJ, calculated by the GPPEC 

(measured by eddy covariance method), FPAR(MOD15A2) and PAR (meteorological 

measurements).  

 

In these seven maize sites, the uncertainties of the underestimates were present in the 

LUE because the tower observing meteorological data only gently improve the GPPMOD 

algorithm. However, after using the LUE calibrated by the eddy covariance flux tower 

data, the magnitude of GPPMOD can be dramatically improved. Many previous works on 

the validation of GPPMOD proved that the LUE was the primary reason for GPP 

underestimate (Turner et al., 2003; Turner et al., 2006; Fu et al., 2012). 

 

4.3 The FPAR and its uncertainty on the GPP  

 

4.3.1 The uncertainty of contaminated FPAR 

 

It is apparent that the accuracy of the MODIS GPP product is highly reliant on the 

MODIS FPAR product and that the retrieval of FPAR under bad conditions with 

persistent cloud cover, fog, rainy weather, and low solar angles was extremely difficult 

(Coops et al., 2007). As a result, extraction of a high FPAR data for each of the 8-day 

time intervals can be problematic, leading to the uncertainty of the MODIS GPP. To 

obtain FPAR with no noise from seven maize sites under conditions with low solar 

angles and persistent cloud cover is exceptionally challenging. 

 

In this study, the noise of FPAR primarily appears at the DE-Kli and FR-Gri sites, 

which were in the ocean climate with a lot of cloudy and rainy weather (Figure 4). 

According to our calculation results, the GPP in the ocean climate at DE-Kli site was 

most affected by the noise of FPAR at 14%, followed by the FR-Gri site at 7%. After 

using the reconstructed FPAR as the input in Simulation FPAR_cor, the R2 between the 

GPPFPAR_cor and GPPEC was improved from 0.64 to 0.78 and 0.48 to 0.53, respectively 

(Table 5). Meanwhile, the monsoon climate can experience significant rainfall in the 

summer in the growing season, such as the CN-YC site. At CN-YC site, the R2 between 

the GPPFPAR_cor and GPPEC was from 0.76 to 0.83 with the RMSE from 16 to 18.66 . In 

the continental climate of the American sites and CN-DM site, the GPP was slightly 

influenced by the contaminated FPAR.  

 

In the absence of field measurements of FPAR, this study inferred the parameter of 

FPAR assimilated from the MODIS product relying on peer-reviewed literatures. The 

prevalence of persistent cloud covers coupled with fog at high relative daily humidity 

in the growing season resulted in large uncertainty in the MODIS FPAR (Gebremichael 

and Barros, 2006). This study considered that the current MODIS algorithm, relying on 

DAO data for meteorological input, worked well in sunny days but raised challenges in 

complex weather, such as rainy and foggy days. Because regional weather was 

influenced by climate change, the spatial patterns of cloud cover filled with fog and 

rainfalls cannot be captured by the MODIS FPAR, which causes uncertainty and 

oscillation of the GPP in the growing season.    

 

4.3.2 The uncertainty of canopy heterogeneity 
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Spatial heterogeneities of natural vegetation and land-surface affect the surface 

exchange of energy, water, and carbon, and the lower atmospheric circulation over a 

wide range of scales (Falge et al., 2002). The orientation and size of footprints vary 

remarkably according to the wind speed and direction from season to season (Chen et 

al., 2009). There is also the problem of the mismatch of the representativeness between 

the flux tower and the satellite observation of the GPPMOD product. This study took no 

account of the footprint of observation in the eddy covariance flux tower because the 

original footprint was not big enough to be a pixel in the MODIS GPP products. 

Similarly to most studies, there are some areas to be improved in future studies, such 

as the footprint of eddy covariance flux. 

 

With the comparison of the GPPEC and GPPMOD, simulated GPP have a systematic 

basis in the non-growing season in the American and European sites. In other words, 

GPPMOD and simulated GPP cannot capture the start of the growing season but go into 

the growing season ahead of time. The basis of GPPMOD and simulated GPP at the 

American and European sites correspond well with the FPAR from the MOD15A2H, 

which is an important parameter reflecting the condition of vegetation growth in the 

MODIS GPP algorithm. There are obvious reasons that the FPAR of the American and 

European sites mix maize with other vegetation. At the DE-Kli site, the landscapes 

cultivate evergreen forests coupled with a diversity of both annual crops, causing the 

FPAR to mix with forest. Meanwhile, the cropping systems, such as an alternative 

cropping system, make a diversity of the crops scatter near European and American 

sites, and the FPAR of some crops that start growing earlier than the maize was caught 

by the MOD15A2H. Therefore, canopy heterogeneity and a diversity of crops (due to 

the alternative cropping) caused a high value of FPAR in the non-growing season of 

maize, which brought biases to the FPAR and uncertainty to the MODIS GPP.  

 

However, in the Asian sites, single corn crop was planted in wide areas in CN-DM 

and CN-YC sites. Therefore, the canopy heterogeneity was relatively small to ensure 

the FPAR without the interference of other crops, which made the MODIS GPP and 

Simulation GPP correctly capture the seasonal dynamics of maize growing in Asian 

sites. 

 

 

4.4 The uncertainty of eddy covariance   

 

The uncertainty of eddy covariance also exists, notably in the estimation of 

ecosystem respiration (Goulden et al., 1996) and interpolation errors caused by missing 

data. GPP is calculated as the net ecosystem exchange (NEE) plus ecosystem 

respiration (ER). As a result, various flux NEE partition methods will lead to different 

GPP amounts, even at the same site (Reichstein et al., 2005; Desai et al., 2008). In this 

study, daytime respiration employs the Van’t Hoff function (nighttime-based method: 

GPP_NB). With this method, the result can be affected by the suppression of the 

turbulence and dominance of advective fluxes at night (Lasslop et al., 2010).  

5.   Conclusions   

In this study, the MODIS GPP product of the maize is validated by the eddy 

covariance tower flux data at seven sites in America, Europe and Asia. The MODIS 
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GPP was underestimated by approximately 6% to 58%. The reasons for 

underestimation are as follows: 

 

The marked influence of the accuracy of MODIS GPP was the LUE in each site. In 

the MODIS algorithm, the problem of the underestimate in LUE is a common 

phenomenon on the global scale. In the MODIS GPP algorithm, the maximum LUE of 

crops is defaulted at 1.044 g C/MJ, which contains all the types of crop without 

differentiation of C3 and C4. In fact, the mean calibration maximum LUE of these seven 

sites was 2.55 g C /MJ. The disparities between the default LUE in the MODIS GPP 

algorithm and the calibrated LUE from eddy flux tower are the primary reason for the 

underestimation of MODIS GPP. 

 

In addition, the contaminated FPAR is a big contributor to the underestimate of 

MODIS GPP.  

 

Meanwhile, in America and Europe, canopy heterogeneity and the diversity of crops 

caused by alternative cropping led to the deviation of catching the growing season of 

the maize crop, which introduces errors to the FPAR and uncertainty to the MODIS 

GPP. 

 

When the MODIS GPP is applied to a specific area, users should consider the 

regional weather, the canopy heterogeneity and calibrate LUE from the eddy flux tower 

to minimize the noise of the FPAR and LUE for better accuracy of the MODIS GPP 

product. After improving the parameter of LUE and FPAR, the MODIS GPP product 

is applicable for global GPP calculations in temporal and spatial scales. 
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