951 research outputs found
Network Utility Maximization under Maximum Delay Constraints and Throughput Requirements
We consider the problem of maximizing aggregate user utilities over a
multi-hop network, subject to link capacity constraints, maximum end-to-end
delay constraints, and user throughput requirements. A user's utility is a
concave function of the achieved throughput or the experienced maximum delay.
The problem is important for supporting real-time multimedia traffic, and is
uniquely challenging due to the need of simultaneously considering maximum
delay constraints and throughput requirements. We first show that it is
NP-complete either (i) to construct a feasible solution strictly meeting all
constraints, or (ii) to obtain an optimal solution after we relax maximum delay
constraints or throughput requirements up to constant ratios. We then develop a
polynomial-time approximation algorithm named PASS. The design of PASS
leverages a novel understanding between non-convex maximum-delay-aware problems
and their convex average-delay-aware counterparts, which can be of independent
interest and suggest a new avenue for solving maximum-delay-aware network
optimization problems. Under realistic conditions, PASS achieves constant or
problem-dependent approximation ratios, at the cost of violating maximum delay
constraints or throughput requirements by up to constant or problem-dependent
ratios. PASS is practically useful since the conditions for PASS are satisfied
in many popular application scenarios. We empirically evaluate PASS using
extensive simulations of supporting video-conferencing traffic across Amazon
EC2 datacenters. Compared to existing algorithms and a conceivable baseline,
PASS obtains up to improvement of utilities, by meeting the throughput
requirements but relaxing the maximum delay constraints that are acceptable for
practical video conferencing applications
On the Min-Max-Delay Problem: NP-completeness, Algorithm, and Integrality Gap
We study a delay-sensitive information flow problem where a source streams
information to a sink over a directed graph G(V,E) at a fixed rate R possibly
using multiple paths to minimize the maximum end-to-end delay, denoted as the
Min-Max-Delay problem. Transmission over an edge incurs a constant delay within
the capacity. We prove that Min-Max-Delay is weakly NP-complete, and
demonstrate that it becomes strongly NP-complete if we require integer flow
solution. We propose an optimal pseudo-polynomial time algorithm for
Min-Max-Delay, with time complexity O(\log (Nd_{\max}) (N^5d_{\max}^{2.5})(\log
R+N^2d_{\max}\log(N^2d_{\max}))), where N = \max\{|V|,|E|\} and d_{\max} is the
maximum edge delay. Besides, we show that the integrality gap, which is defined
as the ratio of the maximum delay of an optimal integer flow to the maximum
delay of an optimal fractional flow, could be arbitrarily large
When Backpressure Meets Predictive Scheduling
Motivated by the increasing popularity of learning and predicting human user
behavior in communication and computing systems, in this paper, we investigate
the fundamental benefit of predictive scheduling, i.e., predicting and
pre-serving arrivals, in controlled queueing systems. Based on a lookahead
window prediction model, we first establish a novel equivalence between the
predictive queueing system with a \emph{fully-efficient} scheduling scheme and
an equivalent queueing system without prediction. This connection allows us to
analytically demonstrate that predictive scheduling necessarily improves system
delay performance and can drive it to zero with increasing prediction power. We
then propose the \textsf{Predictive Backpressure (PBP)} algorithm for achieving
optimal utility performance in such predictive systems. \textsf{PBP}
efficiently incorporates prediction into stochastic system control and avoids
the great complication due to the exponential state space growth in the
prediction window size. We show that \textsf{PBP} can achieve a utility
performance that is within of the optimal, for any ,
while guaranteeing that the system delay distribution is a
\emph{shifted-to-the-left} version of that under the original Backpressure
algorithm. Hence, the average packet delay under \textsf{PBP} is strictly
better than that under Backpressure, and vanishes with increasing prediction
window size. This implies that the resulting utility-delay tradeoff with
predictive scheduling beats the known optimal tradeoff for systems without prediction
Pituitary Morphology and Function in 43 Children with Central Diabetes Insipidus
Objective. In pediatric central diabetes insipidus (CDI), etiology diagnosis and pituitary function monitoring are usually delayed. This study aimed to illustrate the importance of regular follow-up and pituitary function monitoring in pediatric CDI. Methods. The clinical, hormonal, and neuroradiological characteristics of children with CDI at diagnosis and during 1.5–2-year follow-up were collected and analyzed. Results. The study included 43 CDI patients. The mean interval between initial manifestation and diagnosis was 22.29 ± 3.67 months (range: 2–108 months). The most common complaint was polyuria/polydipsia. Causes included Langerhans cell histiocytosis, germinoma, and craniopharyngioma in 2, 5, and 4 patients; the remaining were idiopathic. No significant changes were found during the 1.5–2 years after CDI diagnosis. Twenty-three of the 43 cases (53.5%) had ≥1 anterior pituitary hormone deficiency. Isolated growth hormone deficiency was the most frequent abnormality (37.5%) and was not associated with pituitary stalk diameter. Multiple pituitary hormone deficiencies were found in 8 cases with pituitary stalk diameter > 4.5 mm. Conclusion. Diagnosis of CDI is usually delayed. CDI with a pituitary stalk diameter > 4.5 mm carries a higher risk of multiple pituitary hormone deficiencies. Long-term MRI and pituitary function follow-ups are necessary for children with idiopathic CDI
Minimizing Age-of-Information with Throughput Requirements in Multi-Path Network Communication
We consider the scenario where a sender periodically sends a batch of data to
a receiver over a multi-hop network, possibly using multiple paths. Our
objective is to minimize peak/average Age-of-Information (AoI) subject to
throughput requirements. The consideration of batch generation and multi-path
communication differentiates our AoI study from existing ones. We first show
that our AoI minimization problems are NP-hard, but only in the weak sense, as
we develop an optimal algorithm with a pseudo-polynomial time complexity. We
then prove that minimizing AoI and minimizing maximum delay are "roughly"
equivalent, in the sense that any optimal solution of the latter is an
approximate solution of the former with bounded optimality loss. We leverage
this understanding to design a general approximation framework for our
problems. It can build upon any -approximation algorithm of the maximum
delay minimization problem, to construct an -approximate solution
for minimizing AoI. Here is a constant depending on the throughput
requirements. Simulations over various network topologies validate the
effectiveness of our approach.Comment: Accepted by the ACM Twentieth International Symposium on Mobile Ad
Hoc Networking and Computing (ACM MobiHoc 2019
Shuttle-like supramolecular nanostructures formed by self-assembly of a porphyrin via an oil/water system
In this paper, in terms of the concentration of an aqueous solution of a surfactant, we investigate the self-assembly behavior of a porphyrin, 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-porphine [H2TPyP], by using an oil/water system as the medium. We find that when a chloroform solution of H2TPyP is dropwise added into an aqueous solution of cetyltrimethylammonium bromide [CTAB] with a lower concentration, a large amount of irregular nanoarchitectures, together with a small amount of well-defined shuttle-like nanostructures, hollow nanospheres, and nanotubes, could be produced. While a moderate amount of shuttle-like nanostructures accompanied by a few irregular nanoarchitectures, solid nanospheres, and nanorods are produced when a CTAB aqueous solution in moderate concentration is employed, in contrast, a great quantity of shuttle-like nanostructures together with a negligible amount of solid nanospheres, nanofibers, and irregular nanostructures are manufactured when a high-concentration CTAB aqueous solution is involved. An explanation on the basis of the molecular geometry of H2TPyP and in terms of the intermolecular π-π interactions between H2TPyP units, and hydrophobic interactions between CTAB and H2TPyP has been proposed. The investigation gives deep insights into the self-assembly behavior of porphyrins in an oil/water system and provides important clues concerning the design of appropriate porphyrins when related subjects are addressed. Our investigation suggests that an oil/aqueous system might be an efficient medium for producing unique organic-based nanostructures
A Novel Multi-Charged Draw Solute That Removes Organic Arsenicals from Water in a Hybrid Membrane Process
The potential of forward osmosis
for water treatment can only be
maximized with suitable draw solutes. Here a three-dimensional, multicharge
draw solute of decasodium phytate (Na<sub>10</sub>-phytate) is designed
and synthesized for removing organic arsenicals from water using a
hybrid forward osmosis (FO) – membrane distillation (MD) process.
Efficient water recovery is achieved using Na<sub>10</sub>-phytate
as a draw solute with a water flux of 20.0 LMH and negligible reverse
solute diffusion when 1000 ppm organic arsenicals as the feed and
operated under ambient conditions with FO mode. At 50 °C, the
novel draw solute increases water flux by more than 30% with water
fluxes higher than 26.0 LMH on the FO side, drastically enhancing
water recovery efficiency. By combining the FO and MD processes into
a single hybrid process, a 100% recovery of Na<sub>10</sub>-phytate
draw solute was achieved. Crucially, organic arsenicals or Na<sub>10</sub>-phytate draw solutes are both rejected 100% and not detected
in the permeate of the hybrid process. The complete rejection of both
organic arsenicals and draw solutes using hybrid membrane processes
is unprecedented; creating a new application for membrane separations
- …