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ABSTRACRT: The potential of forward osmosis for water treatment can only be maximized 10 

with suitable draw solutes. Here a three-dimensional, multi-charge draw solute of decasodium 11 

phytate (Na10-phytate) is designed and synthesized for removing organic arsenicals from water 12 

using a hybrid forward osmosis (FO) – membrane distillation (MD) process. Efficient water 13 

recovery is achieved using Na10-phytate as a draw solute with a water flux of 20.0 LMH and 14 

negligible reverse solute diffusion when 1000 ppm organic arsenicals as the feed and operated 15 

under ambient conditions with FO mode. At 50 ˚C, the novel draw solute increases water flux by 16 

more than 30 % with water fluxes higher than 26.0 LMH on the FO side, drastically enhancing 17 
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water recovery efficiency. By combining the FO and MD processes into a single hybrid process, 18 

a 100% recovery of Na10-phytate draw solute was achieved. Crucially, organic arsenicals or 19 

Na10-phytate draw solutes are both rejected 100% and not detected in the permeate of the hybrid 20 

process. The complete rejection of both organic arsenicals and draw solutes using hybrid 21 

membrane processes is unprecedented; creating a new application for membrane separations. 22 

■ TOC Art 23 

 24 

 25 

■ INTRODUCTION 26 

Arsenic contamination of water resources arise from their natural geological presence in deep 27 

underground water sources or from anthropogenic activities such as mining, farming, and wood 28 

preservation.
1-3

 Arsenic can exist as toxic (inorganic or organic) and nontoxic (organic content in 29 

seafood) forms.
1,3

 The toxicity of arsenic depends on valence state, solubility, physical state and 30 
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purity, rates of absorption and elimination. In general, the toxicity of arsenicals is as follows: 31 

Inorganic trivalent > organic trivalent > inorganic pentavalent > organic pentavalent > elemental 32 

arsenic.
4-6

 The toxicity of various arsenic forms guides the design of current arsenic removal 33 

technologies. Traditionally, inorganic arsenic compounds were perceived to be more toxic and 34 

potent than organic arsenicals.
4,7

 Hence, conventional technologies such as adsorption, ion 35 

exchange, coagulation, and membrane separations (nanofiltration, reverse osmosis, and 36 

electrodialysis) were investigated for removing inorganic arsenicals.
6-8

   37 

Despite the extensive applications of these technologies for arsenical removal, the following 38 

problems are widely present. Large volumes of arsenic-rich sludge and waste can be generated 39 

using adsorption and coagulation,
2,9-11

 while membrane separation technologies consume large 40 

amounts of energy.
6,12-14

 The removal of organic arsenic has become increasingly important as 41 

methyl derivatives of arsenic that are omnipresent in agriculture (monomethylarsenic – MMA, 42 

dimethylarsenic – DMA) present a carcinogenic risk.
4
 Moreover, inorganic arsenic compounds 43 

can convert into methylated arsenicals under appropriate conditions.
7
 Clearly, there is a need to 44 

develop a green and cost-effective bespoke technology for removing organic arsenicals.  45 

Here we propose to use a hybrid forward osmosis (FO) – membrane distillation (MD) process 46 

to remove organic arsenics (Figure 1). FO-MD is an economical and sustainable technology to 47 

treat wastewater,
15

 concentrate protein solutions,
16

 and desalination.
17

 This technology separates 48 

water from dissolved solutes (contaminants or proteins) using the operating principle 49 

underpinning FO processes while recovering the draw solute using MD. An osmotic pressure 50 

difference is first generated by a concentration gradient using a “draw” solution with higher 51 

concentration of dissolved solutes in relation to the feed solution. Water from the feed solution 52 

permeates across the membrane, while the contaminants are retained in the FO feed. The FO 53 

Page 3 of 20

ACS Paragon Plus Environment

Environmental Science & Technology



 4

permeate now contains a dilute mixture of water and draw solute that requires MD to recover the 54 

draw solute while producing high purity water. Clearly, the crux of this hybrid process is the 55 

draw solutes.
18

 Suitable draw solutes can enhance FO performance, i.e. achieving high water 56 

recovery whilst avoiding secondary contamination at lower costs, and recovered. Conventional 57 

draw solutes such as NaCl,
19

 MgCl2
20

 and glucose saccharide
20

 have been deployed for removing 58 

inorganic arsenics, but to minimal effect. This is attributed to either low water permeation flux, 59 

or/and severe reverse solute diffusion. 60 

 61 

 62 

Figure 1. Using Na10-phytate draw solute to treat water that contains MMA and DMA via a FO process. 63 

Subsequently, the draw solute is dehydrated and regenerated using an in-line MD process. 64 

Excellent draw solutes that optimize FO processes are typically pH-neutral, easily ionized 65 

compounds that generate large osmotic pressures.
21,22

 These compounds produce a neutral 66 

solution that does not degrade the membrane during FO, whilst providing a large driving force 67 

for water transport. Draw solutes with a suitable spatial configuration and high ionization degree 68 
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are critical for producing a high water recovery and minimizing reverse solute diffusion across 69 

the membrane in FO.
22

 Guided by these requirements, we design and synthesize a novel phytate 70 

(Na10-phytate) and demonstrate the advantages of this new compound as a draw solute to remove 71 

organic arsenicals from water. First, water fluxes of up to 20 LMH (FO mode) are achieved at 72 

room temperature when Na10-phytate is deployed in single FO processes. Second, we observed 73 

negligible reverse solute diffusion during MMA or DMA removal even at 50 ˚C. Finally, we 74 

show that MMA or DMA can be completely removed from water while the Na10-phytate draw 75 

solutes are fully recovered and regenerated. 76 

■ MATERIALS AND METHODS 77 

Syntheses of Na10-Phytate. Na10-phytate was synthesized through the neutralization reaction 78 

between phytic acid and NaOH. The experimental details were given in the supporting 79 

information (SI).   80 

Determination of the Sodium ion Numbers in Na10-Phytate. The number of sodium ions in 81 

the synthesized sodium phytate was determined via acid-base titration. The detailed information 82 

was provided in the SI. 83 

Characterization of Na10-Phytate. Elemental analyses, the size distribution of Na10-phytate in 84 

its aqueous solution, and thermogravimetric analysis (TGA) measurement were used to 85 

determine the chemical composition of Na10-phytate and its state in solution prior to the FO 86 

applications. The experimental details were included in the SI. 87 

Determination of the Physicochemical Properties of the Na10-Phytate Solution. The 88 

physicochemical properties of the Na10-phytate solution were determined by analyzing their 89 

relative viscosity and osmotic pressures. Details were provided in the SI.  90 
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FO Processes. The FO experiments were carried out through a bench-scale FO set-up as 91 

established elsewhere.
23

 Commercial HTI flat sheet membranes and home-made thin-film 92 

composite (TFC) FO membranes fabricated on polyethersulfone (PES) hollow fibers (TFC-93 

PES)
24

 were both used in the FO experiments. The detailed experimental conditions were 94 

provided in the SI. 95 

Preparation and Analyses of MMAs and DMAs Solutions. The MMAs and DMAs 96 

solutions were prepared from CH4AsNaO3 and (CH3)2AsNaO2, respectively. The pH values of 97 

these solutions were maintained using HCl and NaOH. The experimental details of the 98 

MMAs/DMAs solution preparation and analyses were included in the SI.  99 

Regeneration of Na10-Phytate Solute. An MD set-up with home-made PVDF hollow fiber 100 

membranes
25

 was employed to concentrate the diluted Na10-phytate solution after FO. The 101 

experimental details were disclosed in the SI. 102 

■ RESULTS AND DISCUSSION 103 

Synthesis and Characterization of Na10-Phytate. Phytic acid, a hexaphosphate polyacid, was 104 

neutralized with a known volume and molar concentration of sodium hydroxide (NaOH) to 105 

produce a three-dimensional, multi-charge decasodium phytate (Na10-phytate) neutral draw 106 

solute. The leftover NaOH solution was titrated with hydrochloric acid (HCl); revealing a 1:10 107 

ratio of phytic acid to sodium hydroxide i.e. there are 10 Na
+
 ions in the phytate. 108 

Thermogravimetric analysis (TGA) was used to confirm the elemental composition of the 109 

phytate developed here in this work. Thermal decomposition of Na10-phytate occurred in two 110 

stages. The first stage corresponds to a release of water molecules between 122 – 155 ˚C; 111 

accounting for a weight loss of 9.5 wt. % (Table S1). The second stage at 205 – 398 ˚C correlates 112 

to the decomposition of 63.8 wt. % of dehydrated organic phosphate salt (Figure 2a). The residue 113 
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(26.7 wt. %) comprises mainly sodium oxides. Weight losses associated with these two stages 114 

are in excellent comparison with theoretical calculations carrying crystal water molecules. 115 

 116 

Figure 2. (a) TGA analysis of Na10-phytate demonstrating its thermal stability up to 205 ˚C. (b) 117 

The osmotic pressures of the precursor compound – phytic acid, conventional draw solute – 118 

NaCl, and the novel draw solute developed in this work – Na10-phytate. (c) An osmotic pressure 119 

comparison of Na10-phytate with traditional draw solutes. (d) A relative viscosity comparison of 120 

Na10-phytate with other draw solutes. 121 

Important material characteristics that govern applications as FO draw solutes include osmotic 122 

pressure and relative viscosity. We observe that both osmotic pressure and relative viscosity of 123 

Na10-phytate increase non-linearly with higher concentrations (Fig. 2b, Fig. S1). This can be 124 

ascribed to the relatively large configuration and chemical composition of Na10-phytate. The 125 
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hydrophilic functional groups of Na10-phytate can ionize into multi-charge anions and multiple 126 

cations in aqueous solutions. Predicted by the Van’t Hoff equation,
26  

the dissociation of Na10-127 

phytate into multiple ionic species increases the number of solute particles in the aqueous 128 

solution; generating an osmotic pressure (66 atm) which is 65 % larger than that of NaCl at 1.0 129 

M, the conventional draw solute in FO (Figure 2b). At low concentrations, salts dissociate 130 

completely into multiple ionic species; generating large increments in osmotic pressures.
27

 This 131 

is impeded at higher concentrations. However, the osmotic pressure generated by 1.0 M of Na10-132 

phytate is significantly higher than those of synthetic draw solutes such as magnetic 133 

nanoparticles,
28

 polyelectrolytes,
29

 hydrogels
30

 and many others
22,31

 (Figure 2c). Meanwhile the 134 

relative viscosity (ηr) of Na10-phytate is at least 60 % lower than polyelectrolytes
29

 (Figure 2d), 135 

and is comparable to NaCl. Compounds with a reduced relative viscosity are preferred as draw 136 

solutes for FO processes as less internal concentration polarization will be caused and water 137 

molecules can easily diffuse across the membrane towards the permeate side. The good thermal 138 

stability, high osmotic pressure, and low relative viscosity of Na10-phytate are ideal for FO. 139 

Na10-phytate as a FO Draw Solute. Initial screening tests (Figure 3) indicated that FO is 140 

optimized with a home-made thin film composite (TFC) – polyethersulfone (PES) hollow fiber 141 

membrane.
24

 Regardless of membrane orientation (the active layer facing feed solution i.e. FO 142 

mode or the active layer facing draw solution containing 0.5 M of Na10-phytate – pressure 143 

retarded osmosis (PRO) mode), the water flux of a TFC-PES membrane is 3 times higher than 144 

that of a commercial flat sheet membrane from HTI. Coupled with an insignificant salt leakage 145 

rate, the TFC-PES membrane in FO mode is ideal for FO water treatment. The drastically higher 146 

water flux is ascribed to membrane structural configuration where the thin TFC selective layer 147 

supported on a porous PES substrate has lower water transfer resistance relative to the dense and 148 
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thick HTI membrane.
24

 Meanwhile the spatial structure and chemical composition of Na10-149 

phytate contribute to a negligible reverse solute diffusion. In Na10-phytate, the evenly-distributed 150 

phosphates around an aromatic carbon ring develop a three-dimensional structure that form 151 

hydrogen-bond with water molecules in the aqueous solution (Figure S2a). This supramolecular 152 

structure inhibits reverse diffusion; minimizing leakage rates. The size distribution of the 153 

supramolecular network falls in a range much larger than that of an FO membrane pore size 154 

which accounts for the negligible leakage of Na10-phytate (Figure S2b). 155 

 156 

 157 

Figure 3. Effects of draw solute concentration, membrane and membrane orientation on FO performance: 158 

(a) water flux of HTI membrane; (b) water flux of TFC-PES membrane; (c) salt leakage of HTI 159 

membrane; (d) salt leakage of TFC-PES membrane. DI water as the feed solution. 160 
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We investigated the impact of Na10-phytate as a draw solute to remove organic arsenicals in a 161 

FO process using TFC-PES hollow fiber membranes at FO operation times between 20 to 120 162 

mins, MMA or DMA concentrations ranging from 0 – 1000 ppm, pH between 3 to 11, and 163 

temperatures from 25 to 60 ˚C. These parameters are key for creating an osmotic pressure 164 

differential across the membrane to drive FO water treatment. Longer operation times (20 to 120 165 

min) reduced water flux by 20 % with the DI water feed, possibly due to water transfer 166 

concentration polarization and/or membrane fouling (Figure 4a). Water flux is reduced by 35 and 167 

45 % with 1000 ppm of DMA or MMA, respectively. Organic arsenicals in the feed solution 168 

enhance feed osmotic pressure; reducing the net driving force across the membrane, hence 169 

further decreasing water flux. The higher concentration of anions in a MMA solution (relative to 170 

DMA solution) can dissociate into more ionic solute particles;
9
 generating a slightly higher 171 

osmotic pressure. Thus, a lower water flux was observed with MMA present in the feed solution. 172 

The high anion concentration in MMA solutions creates a stronger charge repulsion with the 173 

surface of the electronegative TFC-PES membrane; rejecting more than 99.5 % of MMA. 174 
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 175 

Figure 4. FO performances (water flux and organic As rejection) for removing MMA or DMA from 176 

water using TFC-PES hollow fiber membranes at various operating conditions: (a) 20 – 120 mins of 177 

Page 11 of 20

ACS Paragon Plus Environment

Environmental Science & Technology



 12

operation time; (b) 0 – 1000 ppm MMA or DMA in deionized water; (c) pH 3 – 11; and (d) temperature 178 

between 25 to 60 ˚C. Experimental conditions for each parameter are shown in the Supporting 179 

Information. 180 

Different MMA concentrations did not impact on both water flux and rejection rates (Figure 4b).  181 

However, higher DMA content in the feed solution reduced the rejection rate of organic 182 

arsenicals to less than 96 %. Neutral DMA solution consists 14 % neutral species, and 86 % 183 

monovalent anions.
9
 Higher DMA content will increase the number of neutral DMA; hence 184 

reducing the rejection rate. The ratio of neutral species to anions in MMA/DMA solutions is also 185 

sensitive to pH values (Figure 4c). As pH of a MMA feed solution changes from acidity (3) to 186 

alkalinity (11), the neutral species are converted into various anions;
9
 hence reducing water flux 187 

due to a lower driving force attributed to enhanced osmotic feed pressures but increasing MMA 188 

rejection rates. Since DMA solution consists more neutral DMA species than MMA solution, the 189 

increase in pH from 3 to 11 will only slightly reduce water flux. Higher temperatures will also 190 

enhance the osmotic pressure differentials that consequently increase water flux (Figure 4d). 191 

Ideally, to remove 1000 ppm of MMA or DMA more effectively from water, the FO process 192 

must be conducted under neutral conditions with a higher temperature. To fully optimize the 193 

benefits of FO for removing organic arsenicals, the draw solutes must be recovered/regenerated. 194 

Regeneration of Na10-phytate Draw Solute. Membrane distillation (MD) is a proven 195 

technology for regenerating draw solutes such as hydroacid complexes,
32

 polyelectrolytes,
15

 and 196 

thermosensitive polymers
17

 from dilute FO permeate solutions. Different from FO processes 197 

where draw solution concentration significantly impacts on water flux, temperature dominates 198 

water transport in MD.
33

 This is also observed here when aqueous solutions containing Na10-199 

phytate at different concentrations were deployed in a single MD process using home-made 200 
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polyvinylidene fluoride (PVDF) hollow fiber membranes.
25

 The increase in water flux due to 201 

increasing temperatures can be attributed to the exponential generation of higher water vapor 202 

pressures. The impacts of both Na10-phytate concentration and operation time on water flux were 203 

negligible (Figure S3).   204 

By combining the FO and MD processes into a single hybrid process, we report complete 205 

recovery of Na10-phytate draw solute whilst producing 100 % water (Figure 5). The water flux of 206 

this hybrid process at 50 ˚C is higher than 26.0 LMH on the FO side; sufficient to handle large 207 

quantities of wastewater that are typically associated with industrial-scale operations.
34-36

 This 208 

FO-MD hybrid technology is more efficient that single FO processes for dehydrating dilute 209 

MMA/DMA feed solutions. This is because the MD process can immediately concentrate the FO 210 

permeate consisting of Na10-phytate draw solute. The combination of our novel Na10-phytate 211 

draw solute with a hybrid FO-MD process demonstrates a simple and effective technology for 212 

removing organic arsenicals. Additional complex processes such as pre-oxidation
37

 and 213 

operation in acidic conditions
38

 are not required in this FO-MD process, while side reactions of 214 

MMA conversion into more toxic inorganic species
39

 is inhibited. The combination of our novel 215 

Na10-phytate draw solute with FO-MD hybrid process surpasses the water flux and organic 216 

arsenical rejection of current technologies.
1,6,8

 217 
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218 

Figure 5. (a) The water flux and water transfer rate, (b) concentrations and rejection rates of organic 219 

arsenicals from water of a FO-MD hybrid process using 0.5 M Na10-phytate as draw solute at 50 ˚C.  20 220 

˚C deionized water was deployed on the MD permeate side. 221 

Using a plant-derived compound, phytic acid, we designed and synthesized a novel draw 222 

solute that is suitable for removing organic arsenicals from water in a FO-MD hybrid process. 223 

The presence of hydrophilic functional groups arranged in a three-dimensional configuration 224 

around an aromatic carbon ring can form supramolecular structures through hydrogen bonds with 225 

water molecules that prevent reverse diffusion during FO processes. This draws water across a 226 

TFC-PES hollow fiber membrane at rates that can handle industrial-scale quantities of 227 

wastewater. The regeneration of the novel Na10-phytate draw solute is optimized using an in-line 228 

MD process; streamlining the draw solute recovery process with minimal energy consumption. 229 
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Phytate-based draw solutes can be potentially deployed for the removing other types of 230 

contaminants during water treatment and are especially suitable for protein enrichment. The 231 

negligible reverse diffusion of Na10-phyate in FO can avoid denaturation of impurity-sensitive 232 

proteins and produce high-quality products. 233 
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