7,242 research outputs found

    A sufficient Entanglement Criterion Based On Quantum Fisher Information and Variance

    Full text link
    We derive criterion in the form of inequality based on quantum Fisher information and quantum variance to detect multipartite entanglement. It can be regarded as complementary of the well-established PPT criterion in the sense that it can also detect bound entangled states. The inequality is motivated by Y.Akbari-Kourbolagh et al.et\ al.[Phys. Rev A. 99, 012304 (2019)] which introduced a multipartite entanglement criterion based on quantum Fisher information. Our criterion is experimentally measurable for detecting any NN-qudit pure state mixed with white noisy. We take several examples to illustrate that our criterion has good performance for detecting certain entangled states.Comment: 11 pages, 1 figur

    Concentration for unknown atomic entangled states via cavity decay

    Full text link
    We present a physical scheme for entanglement concentration of unknown atomic entangled states via cavity decay. In the scheme, the atomic state is used as stationary qubit and photonic state as flying qubit, and a close maximally entangled state can be obtained from pairs of partially entangled states probabilistically.Comment: Three pages, Two figure

    Res2Net: A New Multi-scale Backbone Architecture

    Full text link
    Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.Comment: 11 pages, 7 figure

    Characterization of four-qubit states via Bell inequalities

    Get PDF
    A set of Bell inequalities classifying the quantum entanglement of four-qubit states is presented. These inequalities involve only two measurement settings per observer and can characterize fully separable, bi-separable and tri-separable quantum states. In addition, a quadratic inequality of the Bell operators for four-qubit systems is derived
    • …
    corecore