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measurement settings per observer and can characterize fully separable, bi-separable and tri-separable quantum states. In addition, a
quadratic inequality of the Bell operators for four-qubit systems is derived.

Bell inequalities, separability, Bell operators

Citation: Zhao H, Zhang X H, Fei S M, et al. Characterization of four-qubit states via Bell inequalities. Chin Sci Bull, 2013, 58: 2334–2339, doi: 10.1007/s11434-013-
5884-1

The Bell inequality [1] provided the first possibility to distin-
guish experimentally between quantum-mechanical predic-
tions and those of local realistic models. Derivations of new
and stronger Bell inequalities are one of the most important
and challenging subjects in quantum information processing.
Since Bell’s work, there were many important generalizations
such as [2–11] and references therein.

The Bell inequalities presented in [12] involve only two
measurement settings per observer and can detect perfectly
the quantum entanglement of the generalized GHZ states. By
using the idea in constructing Bell operators [12], a set of new
Bell inequalities are given in [13], which gives rise to a finer
classification of the entanglement for three-qubit systems.

The entanglement of four-qubit systems has been treated in
terms of Bell inequalities of Mermin-Klyshko type. In [14]
the quantum nonlocality of some four-qubit states, the GHZ
state, W state, cluster state and the state proposed in [15], has
been investigated, towards the optimal violations of the Bell
inequality for these states. The classification of entanglement
has been also studied in such as [16–19] with linear inequali-
ties for qubit systems and [20] with non-linear inequalities for
detecting bi-separable states in arbitrary dimensional quan-
tum systems.

In this work, we study the quantum entanglement of four-
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qubit systems by using the idea in constructing Bell oper-
ators in [12]. We generalize the results of three-qubit sys-
tems in [13] to four-qubit systems. It has been shown that
the standard Werner-Wolf-Żukowski-Brukner (WWZB) in-
equalities cannot detect the entanglement of the generalized
Greenberger-Horne-Zeilinger (GHZ) states given by |ψ〉 =
cosα|0, ..., 0〉 + sinα|1, ..., 1〉 with 0�α�π/4 [21, 22]. How-
ever, the Bell operators constructed in the way provided in
[12] can detect the entanglement of the generalized GHZ state
wholly. Our Bell operators are constructed by using the idea
in [12]. The resulted Bell inequalities can distinguish fully
separable, bi-separable and tri-separable states of a four-qubit
system. Moreover, these linear Bell inequalities involve only
two measurement settings per observer. Analytical formu-
las of the average values of the Bell operators for four-qubit
systems are also derived. And a quadratic inequality of the
Bell operators for all four-qubit systems has been presented.
Explicit geometrical pictures show the relations between the
different types of quantum entanglement and the violations of
the inequalities.

We fix some notations used in this work. We use the
Dirac’s symbols throughout this paper. If a quantum system
is in one of a number of states |ψ〉i, where i is an index, with
respective probabilities pi, then {pi, |ψ〉i} is called an ensem-
ble of pure states, and the associated density operator for the
system is defined by ρ =

∑
i piρi. The average value of the
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observable M is written 〈M〉 = 〈ψ|M|ψ〉.

1 Classification of four qubits with Bell
inequalities

Consider N parties and allow each of them to choose inde-
pendently between two dichotomic observables A j, B j for the
j-th observer, where A j = �a j · �σ j and B j = �b j · �σ j, with
�σ j = (σ1

( j), σ2
( j), σ3

( j)) the Pauli matrices on the j-th qubit,
and �a j = (a(1)

j , a
(2)
j , a

(3)
j ), �b j = (b(1)

j , b
(2)
j , b

(3)
j ) the real unit vec-

tors. The quantum mechanical Bell operator on the N − 1
qubits except for the i-th qubit is defined as [12]

D(i)
N = B(i)

N−1 ⊗
1
2

(Ai + Bi) + IN−1 ⊗ 1
2

(Ai − Bi), i = 1, . . . ,N,

where B(i)
N−1 is the Bell operator of WWZB inequalities on the

N − 1 qubits except for the i-th qubit,

B(i)
N−1 =

1
2N−1

∑

S 1,...,S N−1=−1,1

S (S 1, . . . , S N−1)

∑

K1,...,KN−1=1,2

S 1
K1−1 . . . S N−1

KN−1−1 ⊗N−1
j=1 O j(Kj),

where IN−1 denotes the corresponding identity matrix. For
S (S 1, . . . , S N−1) =

√
2 cos( π4 (S 1+ · · ·+S N −N)− π

4 ), O j(1) =
A j, O j(2) = B j, one recovers the Mermin-Ardehali-Belinskii-
Klyshko (MABK) inequalities [2].

In the following we study the characterization of entangle-
ment for four-qubit systems, N = 4.
Theorem 1. For fully separable states ρ, we have

|〈D4
(i)〉| � 1, i = 1, 2, 3, 4. (1)

Proof. A general pure four-qubit state can be written as
|ψ〉 = ∑1

i, j,k,l=0 ai jkl|i jkl〉 with normalization
∑1

i, j,k,l=0 |ai jkl|2 =
1. A mixed four-qubit state can be expressed as ρ =

∑
α pαρα,

where 0 < pα � 1,
∑
α pα = 1, ρα = |ψα〉〈ψα | are pure states.

Due to the linear property of the average values,

|〈D4
(i)〉| = |tr(

∑
pαραD(i)

4 )| = |
∑

pαtr(ραD(i)
4 )|

�
∑
|pαtr(ραD(i)

4 )| �
∑
|tr(ραD(i)

4 )|,
it is sufficient to consider the pure states. The fully separable
pure states can be transformed into the form |ψ〉 = |0000〉 in
suitable bases. Therefore it is direct to verify that

|〈D4
(1)〉| = |1

4
((a(3)

1 + b(3)
1 )(−a(3)

2 a(3)
3 a(3)

4 + a(3)
2 b(3)

3 b(3)
4

+ b(3)
2 a(3)

3 b(3)
4 + b(3)

2 b(3)
3 a(3)

4 ) +
1
2

(a(3)
1 − b(3)

1 )| � 1.

Similarly one can prove that |〈D4
(i)〉| � 1 for i = 2, 3, 4. �

Next we consider the cases of tri-separable states. We de-
note ρi j−k−l a tri-separable state of the form ρi j ⊗ ρk ⊗ ρl, in

which qubits i and j are entangled, while qubits k and l are
separable, i � j � k � l = 1, 2, 3, 4.
Theorem 2. For any tri-separable states ρi j−k−l, i � j � k �
l = 1, 2, 3, 4, we have

|〈D4
(i)〉| = |〈D4

( j)〉| � 1, |〈D4
(k)〉| = |〈D4

(l)〉| � 3
2
. (2)

Proof. We consider the case of ρ12−3−4. Every pure state in
ρ12−3−4 can be written in a Schmidt form,|ψ〉 = (cosα|01〉 −
sinα|10〉) ⊗ |0〉 ⊗ |0〉. Therefore

|〈D4
(1)〉|ψ〉| =

∣∣∣∣∣
1
2

[

− (a(3)
1 a(3)

2 + a(3)
2 b(3)

1 )

−
( 2∑

k=1

a(k)
1 a(k)

2 + a(k)
2 b(k)

1

)

sin 2α
]

× 1
2

(−a(3)
3 a(3)

4 + b(3)
3 b(3)

4 )

+
1
2

[

− (a(3)
1 b(3)

2 + b(3)
1 b(3)

2 )

−
( 2∑

k=1

a(k)
1 b(k)

2 + b(k)
1 b(k)

2

)

sin 2α
]

× 1
2

(a(3)
3 b(3)

4 + b(3)
3 a(3)

4 )

+
1
2

(a(3)
1 − b(3)

1 ) cos 2α
∣∣∣∣∣ � 1.

Similarly one can prove that |〈D4
(2)〉|ψ〉| � 1. For the Bell

operator D(3)
4 , we have

|〈D4
(3)〉|ψ〉| =

∣∣∣∣∣
1
4

{[

− (−a(3)
1 a(3)

2 + b(3)
1 b(3)

2 )

−
( 2∑

k=1

−a(k)
1 a(k)

2 +b(k)
1 b(k)

2

)

sin 2α
]

[(a(3)
3 +b(3)

3 )a(3)
4 ]

+

[

− (a(3)
1 b(3)

2 + b(3)
1 a(3)

2 )

−
( 2∑

k=1

a(k)
1 b(k)

2 +b(k)
1 a(k)

2

)

sin 2α
]

[(a(3)
3 +b(3)

3 )b(3)
4 ]
}

+
1
2

(a(3)
3 − b(3)

3 )| � 3
2
.

In a similar way, we have |〈D4
(4)〉|ψ〉| � 3

2 . The cases of
ρ1−2−34, ρ13−2−4, ρ1−3−24, ρ14−2−3 and ρ1−4−23 can be similarly
proved. According to the linear property of average values,
for all tri-separable states we have (2). �

Finally we consider the cases of bi-separable states. There
are two classes of bi-separable ones. (i) Two entangled qubits
i and j are separable from other entangled qubits k and l. For
example, we denote ρ12−34 the bi-separable state of the form
ρ12 ⊗ ρ34, where the qubits 12 and 34 are entangled respec-
tively. (ii) A qubit i is separable from the rest genuine tripar-
tite entangled qubits j, k and l. For instance, ρ1−234 denotes a
bi-separable state of the form ρ1 ⊗ ρ234, where qubits 234 are
genuine entangled.
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Theorem 3. For all bi-separable states ρ, we have

|〈D4
(i)〉ρ| � 3

2
, i = 1, 2, 3, 4, (3)

for ρ in class i), and

|〈D4
(i)〉ρ| �

√
3, i = 1, 2, 3, 4, (4)

for ρ in class ii).
Proof. We first consider bi-separable states in class i). A
pure state in ρ12−34 has the following general form, |ψ〉 =
(cosα|01〉 − sinα|10〉) ⊗ (cosβ|01〉 − sin β|10〉). Hence

|〈D4
(1)〉|ψ〉| =

∣∣∣∣∣
1
4

{[

− (a1
(3)a2

(3) + a2
(3)b1

(3))

−
( 2∑

k=1

a1
(k)a2

(k) + a2
(k)b1

(k)
)

sin 2α
]

×
[

− (−a3
(3)a4

(3) + b3
(3)b4

(3))

−
( 2∑

k=1

−a3
(k)a4

(k) + b3
(k)b4

(k)
)

sin 2β
]

+

[

− (a1
(3)b2

(3) + b1
(3)b2

(3))

−
( 2∑

k=1

a1
(k)b2

(k) + b1
(k)b2

(k)
)

sin 2α
]

×
[

− (a3
(3)b4

(3) + a4
(3)b3

(3))

−
( 2∑

k=1

a3
(k)b4

(k) + a4
(k)b3

(k)
)

sin 2β
]}

+
1
2

(a1
(3) − b1

(3))cos 2α
∣∣∣∣∣ �

3
2
.

Similarly one can get |〈D4
(i)〉|ψ〉| � 3

2 for i = 2, 3, 4. For
the cases of ρ13−24 and ρ14−23, we can also similarly have
|〈D4

(i)〉|ψ〉| � 3
2 for i = 1, 2, 3, 4.

For bi-separable states in class ii), we consider the case of
ρ1−234. There are two inequivalent kinds of genuine three-
qubit entangled states, the GHZ-type and W-type [23]. For
simplicity in the following we denote cx = cos x and sx =

sin x. The GHZ-type state can be written as

|ψGHZ〉 =
√

K(cδ|0〉|0〉|0〉 + sδe
iϕ|φA〉|φB〉|φC〉),

where |φA〉 = cα|0〉 + sα|1〉, |φB〉 = cβ|0〉 + sβ|1〉, |φC〉 =
cγ|0〉 + sγ|1〉, δ ∈ (0, π4 ], α, β, γ ∈ (0, π2 ], ϕ ∈ [0, 2π) and
K = (1+ 2cδsδcαcβcγcϕ)−1 ∈ ( 1

2 ,∞) is a normalization factor.
The W-type state can be written as

|ψW〉 =
√

a|001〉 + √b|010〉 + √c|100〉 + √d|000〉,
where a, b, c > 0 and d = 1 − (a + b + c) � 0. Therefore
every pure state in ρ1−234 via a suitable choice of bases can
be written as |ψ0−GHZ〉 = |0〉 ⊗ |ψGHZ〉, or |ψ0−W〉 = |0〉 ⊗ |ψW〉.

We calculate here the value |〈A2A3A4〉|ψGHZ〉|. The other
items have similar expressions.

|〈A2A3A4〉|ψGHZ〉| =
K
∣∣∣a(3)

2 a(3)
3 a(3)

4 (c2
δ + s2

δ · cos 2α · cos 2β · cos 2γ)

+a(1)
2 a(3)

3 a(3)
4 (sin 2δ · cϕsαcβcγ + s2

δ · sin 2α · cos 2β · cos 2γ)

+a(3)
2 a(1)

3 a(3)
4 (sin 2δ · cϕcαsβcγ + s2

δ · cos 2α · sin 2β · cos 2γ)

+a(3)
2 a(3)

3 a(1)
4 (sin 2δ · cϕcαcβsγ + s2

δ · cos 2α · cos 2β · sin 2γ)

+a(1)
2 a(1)

3 a(3)
4 (sin 2δ · cϕsαsβsγ + s2

δ · sin 2α · sin 2β · cos 2γ)

−a(2)
2 a(2)

3 a(3)
4 sin 2δ · cϕsαsβcγ

+a(1)
2 a(3)

3 a(1)
4 (sin 2δ · cϕsαcβsγ + s2

δ · sin 2α · cos 2β · sin 2γ)

−a(2)
2 a(3)

3 a(2)
4 sin 2δ · cϕsαcβsγ

+a(3)
2 a(1)

3 a(1)
4 (sin 2δ · cϕcαsβsγ + s2

δ · cos 2α · sin 2β · sin 2γ)

−a(3)
2 a(2)

3 a(2)
4 sin 2δ · cϕcαsβsγ

+a(1)
2 a(1)

3 a(1)
4 s2

δ · sin 2α · sin 2β · sin 2γ)

+(a(1)
2 a(1)

3 a(1)
4 − a(2)

2 a(2)
3 a(1)

4 − a(2)
2 a(1)

3 a(2)
4 − a(1)

2 a(2)
3 a(2)

4 ) sin 2δ

×cϕsαsβsγ
∣∣∣ .

|〈A2A3A4〉|ψGHZ〉| attains its maximum at α = β = γ = π
2 , ϕ = 0

and δ = π
4 according to the value of K and the property of the

trigonometric functions. Hence we have

|〈D4
(1)〉|ψ0−GHZ〉|

� |1
4

(a(3)
1 + b(3)

1 )[a(1)
2 (a(1)

3 a(1)
4 − a(2)

3 a(2)
4 − b(1)

3 b(1)
4 + b(2)

3 b(2)
4 )

+ a(2)
2 (−a(1)

3 a(2)
4 − a(2)

3 a(1)
4 + b(1)

3 b(2)
4 + b(2)

3 b(1)
4 )

+ b(1)
2 (−a(1)

3 b(1)
4 + a(2)

3 b(2)
4 − b(1)

3 a(1)
4 + b(2)

3 a(2)
4 )

+ b(2)
2 (a(1)

3 b(2)
4 + a(2)

3 b(1)
4 + b(1)

3 a(2)
4 + b(2)

3 a(1)
4 )]

+
1
2

(a(3)
1 − b(3)

1 )| � 1.

Using the similar method above, we have also |〈D4
(i)〉|ψ0−GHZ〉|

� 1 for i = 2, 3, 4.
Next we compute |〈A2A3A4〉|ψW〉|.
|〈A2A3A4〉|ψW〉|
= |(d − a − b − c)a(3)

2 a(3)
3 a(3)

4 + 2
√

cda(1)
2 a(3)

3 a(3)
4

+ 2
√

bda(3)
2 a(1)

3 a(3)
4 +2

√
ada(3)

2 a(3)
3 a(1)

4 +2
√

bc(a(1)
2 a(1)

3 a(3)
4

+ a(2)
2 a(2)

3 a(3)
4 ) + 2

√
ac(a(1)

2 a(3)
3 a(1)

4 + a(2)
2 a(3)

3 a(2)
4 )

+ 2
√

ab(a(3)
2 a(1)

3 a(1)
4 + a(3)

2 a(2)
3 a(2)

4 )|
�

1
2
|a(3)

2 (−a(3)
3 a(3)

4 + a(1)
3 a(1)

4 + a(2)
3 a(2)

4 + a(1)
3 a(3)

4 + a(3)
3 a(1)

4 )

+ a(1)
2 (a(3)

3 a(3)
4 +a(1)

3 a(3)
4 +a(3)

3 a(1)
4 )+a(2)

2 (a(2)
3 a(3)

4 +a(3)
3 a(2)

4 )|

�
1
2
|a(3)

2 + a(1)
2 + a(2)

2 | �
√

3
2
,
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where we have used the Cauchy-Schwarz inequality and the
relation

4√
abcd � a+b+c+d

4 , for which the equality holds if and
only if a = b = c = d. Therefore we have

|〈D4
(1)〉|ψ0−W〉| �

1
4
× 2 ×

( √3
2
× 4
)

=
√

3.

Similarly one can obtain |〈D4
(i)〉|ψ0−W〉| �

√
3 for i = 2, 3, 4.

The cases for ρ2−134, ρ3−124 and ρ4−123 can be similarly
proved. �

2 The quadratic inequality of Bell operator for
four qubits

We derive now an analytical quadratic inequality of the Bell
operator for four qubits. The four-qubit states ρ can be writ-
ten as [24],

ρ =
1

16
(I ⊗ I ⊗ I ⊗ I +

3∑

i1=1

Q(1)
i1
σ(1)

i1
⊗ I ⊗ I ⊗ I

+

3∑

i2=1

Q(2)
i2

I ⊗ σ(2)
i2
⊗ I ⊗ I +

3∑

i3=1

Q(3)
i3

I ⊗ I ⊗ σ(3)
i3
⊗ I

+

4∑

i4=1

Q(4)
i4

I ⊗ I ⊗ I ⊗ σ(4)
i4
+ · · ·

+

3∑

i1,i2,i3,i4=1

Q(1234)
i1i2 i3i4

σ(1)
i1
⊗ σ(2)

i2
⊗ σ(3)

i3
⊗ σ(4)

i4
). (5)

Set

−→α = (Q(1)
1 ,Q(1)

2 ,Q(1)
3 ),

−→
β = (Q(2)

1 ,Q(2)
2 ,Q(2)

3 ),

−→γ = (Q(3)
1 ,Q(3)

2 ,Q(3)
3 ), −→ε = (Q(4)

1 ,Q(4)
2 ,Q(4)

3 ),

−→
S = (Q(124)

111 ,Q(124)
112 ,Q(124)

113 , . . . ,Q(124)
331 ,Q(124)

332 ,Q(124)
333 ),

−→
T = (Q(123)

111 ,Q(123)
112 ,Q(123)

113 , . . . ,Q(123)
331 ,Q(123)

332 ,Q(123)
333 ),

−→
U = (Q(234)

111 ,Q(234)
112 ,Q(234)

113 , . . . ,Q(234)
331 ,Q(234)

332 ,Q(234)
333 ),

−→
V = (Q(134)

111 ,Q(134)
112 ,Q(134)

113 , . . . ,Q(134)
331 ,Q(134)

332 ,Q(134)
333 ),

−→
Q = (Q(1234)

1111 ,Q(1234)
1112 ,Q(1234)

1113 , . . . , . . . ,Q(1234)
3331 ,Q(1234)

3332 ,Q(1234)
3333 ).

We have the following lemma.
Lemma. For four qubits pure states, we have the following
equality,

|−→α |2+ |−→β |2+ |−→γ |2+ |−→ε |2+ |−→S |2+ |−→T |2+ |−→U |2+ |−→V |2+ |−→Q|
2

= 9.
(6)

Proof. A four-qubit pure state |ψ〉 can be also written as
[25],

|ψ〉 = l0|0000〉 + l1|0011〉 + l2|0101〉 + l3|0110〉 + l4|1100〉

+ l5|1001〉 + l6|1010〉 + l7|1011〉 + l8|0111〉 + l9|1101〉
+ l10|1110〉 + l11|1111〉,

where li with i = 7, 8, 9, 10, 11, are non-negative real numbers
and |l0| � |li| for i = 1, 2, . . . , 11. Comparing ρ = |ψ〉〈ψ| with
(5), we have the relation (6) by straightforward calculation.

Here |−→α |2, |−→β |2, |−→γ |2, |−→ε |2, |−→S |2, |−→T |2, |−→U |2, |−→V |2, |−→Q|2 are all
invariants under local unitary transformations, and equality

(6) holds for all pure states. The minimum of |−→Q| is attained

for fully separable states and the maximum of |−→Q| is obtained
for maximally entangled states.
Theorem 4. Any four-qubit mixed state ρ satisfies the fol-
lowing inequality,

ω = 〈D4
(1)〉2ρ + 〈D4

(2)〉2ρ + 〈D4
(3)〉2ρ + 〈D4

(4)〉2ρ � 4. (7)

Proof. Due to that the quadratic function is a convex func-
tion,

〈D4
(i)〉2 = [tr(

∑
pαραD(i)

4 )]2 = [
∑

pαtr(ραD(i)
4 )]2

�
∑

pα[tr(ραD(i)
4 )]

2
�
∑

[tr(ραD(i)
4 )]

2
,

it is sufficient to consider only pure states. Set

Ci =
1
2

(Ai + Bi), Di =
1
2

(Bi − Ai),

−→si =
1
2

(
−→
bi +
−→ai),

−→
ti =

1
2

(
−→
bi − −→ai),

(8)

We have |−→si |2 + |−→ti |2 = 1, −→si · −→ti = 0, and

〈D4
(1)〉2ρ = {[−→s1 ⊗ −→s2 ⊗ (−→s3 ⊗ −→t4 − −→t3 ⊗ −→t4 + −→s3 ⊗ −→s4 +

−→t3 ⊗ −→s4)

+ −→s1 ⊗ −→t2 ⊗ (−→s3 ⊗ −→s4−−→t3 ⊗ −→s4−−→t3 ⊗ −→t4−−→s3 ⊗ −→t4 )]

· −→Q − −→t1 · −→α }2,
〈D4

(2)〉2ρ ={[−→t1 ⊗ −→s2 ⊗ (−→s3 ⊗ −→s4 − −→t3 ⊗ −→s4 − −→s3 ⊗ −→t4 − −→t3 ⊗ −→t4 )

+ −→s1 ⊗ −→s2 ⊗ (−→s3 ⊗ −→t4 − ⊗−→t3 ⊗ −→t4 + −→s3 ⊗ −→s4

+
−→
t3 ⊗ −→s4)] · −→Q − −→t2 · −→β }2,

〈D4
(3)〉2ρ ={[−→t1 ⊗ −→s2 ⊗ (−→s3 ⊗ −→s4 − −→s3 ⊗ −→t4 ) + −→s1 ⊗ −→t2 ⊗ (−→s3 ⊗ −→s4

− −→s3 ⊗ −→t4 ) + −→s1 ⊗ −→s2 ⊗ (−→s3 ⊗ −→s4 +
−→s3 ⊗ −→t4 )

− −→t1 ⊗ −→t2 ⊗ (−→s3 ⊗ −→s4 − −→s3 ⊗ −→t4 )] · −→Q − −→t3 · −→γ }2,
〈D4

(4)〉2ρ ={[−→t1 ⊗ −→s2 ⊗ (−→s3 ⊗ −→s4 − −→t3 ⊗ −→s4) + −→s1 ⊗ −→t2 ⊗ (−→s3 ⊗ −→s4

− −→t3 ⊗ −→s4) + −→s1 ⊗ −→s2 ⊗ (−→s3 ⊗ −→s4 +
−→
t3 ⊗ −→s4)

− −→t1 ⊗ −→t2 ⊗ (−→s3 ⊗ −→s4 − −→t3 ⊗ −→s4)] · −→Q − −→t4 · −→ε }2,

where −→s ⊗ −→t ⊗ −→p ⊗ −→q · −→Q denotes
∑

i jkh sit j pkqhQi jkh. ω at-

tains its maximum at either |−→Q| = 1 or |−→Q| = 3. For the case

of |−→Q| = 1, |ψ〉 is fully separable and the inequality is satisfied

by using Theorem 1. For the case of |−→Q| = 3, |ψ〉 is maxi-
mally entangled. Without losing generality, we consider the
maximally entangled state |ψ〉 = 1√

2
(|0000〉 + |1111〉). Since
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Q1111 = Q2222 = Q3333 = 1, Q1122 = Q1212 = Q2112 =

Q2121 = Q1221 = Q2211 = −1, the rest Qi jkh = 0 and |−→si |2

+|−→ti |2 = 1, −→si · −→ti = 0, thus to attain the maximum of ω,
the third components of −→si and −→ti should be zero, and either
|−→si | = |−→ti | or one of the |−→si | and |−→ti | is zero and the other one is
1. Let i � j � k � l ∈ {1, 2, 3, 4}, we can obtain the following
classifications:

(1) |−→si | = 1
(

0 or
1√
2

)

, |−→s j | = |−→sk | = |−→sl | = 1
(

0 or
1√
2

)

,

(2) |−→si | = |−→s j | = 0, |−→sk | = |−→sl | = 1√
2
,

(3) |−→si | = |−→s j | = 1, |−→sk | = |−→sl | = 0
(

or
1√
2

)

,

(4) |−→si | = |−→s j | = 1, |−→sk | = 0, |−→sl | = 1√
2
, (9)

(5) |−→si | = |−→s j | = 0, |−→sk | = 1, |−→sl | = 1√
2
,

(6) |−→si | = |−→s j | = 1√
2
, |−→sk | = 0, |−→sl | = 1.

For the case |−→s1| = |−→s2| = |−→s3| = |−→s4| = 1, we have

ω = 4(−→s1 ⊗ −→s2 ⊗ −→s3 ⊗ −→s4 · −→Q)
2
= 4〈ψ|C1C2C3C4|ψ〉2 � 4.

For the case |−→s1| = |−→s2| = |−→s3| = 1 and |−→s4| = 1√
2
, we get

ω = 3(−→s1 ⊗ −→s2 ⊗ −→s3 ⊗ (−→t4 + −→s4) · −→Q)2

+ (−→s1 ⊗ −→s2 ⊗ −→s3 ⊗ −→s4 · −→Q)
2

= 3〈ψ|C1C2C3(D4 +C4)|ψ〉2
+ 〈ψ|C1C2C3C4|ψ〉2 � 4.

For the case |−→s1| = 1 and |−→s2| = |−→s3| = |−→s4| = 1√
2
, using the

orthogonal relation of −→si and −→ti , we can express −→si and −→ti as

−→s1 = (sin θ1 cosϕ1, sin θ1 sin ϕ1, cos θ1),

−→si =
1√
2
(sin θi cosϕi, sin θi sin ϕi, cos θi),

−→
ti = 1√

2
(cos θi cosϕi, cos θi sin ϕi,− sin θi),

where i = 2, 3, 4. After straightforward calculations, we have

ω =
[ 1

2
√

2
sin (θ1 + ϕ1 + θ2 + ϕ2 + θ3 + ϕ3 + θ4 + ϕ4)

− cos (θ1 + ϕ1 + θ2 + ϕ2 + θ3 + ϕ3 + θ4 + ϕ4)
]

+
4

2
√

2
cos θ1 cos θ4[cos (θ2 + θ3) − sin (θ2 + θ3)]2

� 4.

For the case |−→s1| = |−→s2| = |−→s3| = |−→s4| = 1√
2
, one can set

−→si =
1√
2
(sin θi cosϕi, sin θi sinϕi, cos θi),

−→
ti = 1√

2
(cos θi cosϕi, cos θi sin ϕi,− sin θi)

for i = 1, 2, 3, 4, and obtain ω � 4. For other cases inequality
(7) can be similarly proved. �

The inequalities in Theorems 1 to 4 give rise to an ex-
plicit geometric picture. Taking the average of D(1)

4 , D(2)
4 , D(3)

4

and D(4)
4 as the four coordinates of a four dimensional space,

from Theorem 4 we have that 〈D4
(i)〉, i = 1, ..., 4, constitute

a 3-dimensional sphere. All fully separable states are con-
fined in the center, in a 4-dimensional rectangular with size
1 × 1 × 1 × 1, see Figure 1. While from the Theorem 2, the
tri-separable state, for example, ρ12−3−4, is in a 4-dimensional
rectangular with the size 1×1×3/2×3/2. From the Theorem
3, the bi-separable state in class i), for example ρ12−34, is in a
4-dimensional rectangular with size 3/2×3/2×3/2×3/2. For
the bi-separable state in class ii), for example ρ1−234, we have
a 4-dimensional rectangular with size

√
3 × √3 × √3 × √3.

3 Conclusions and discussion

We have investigated the classification of four-qubit entan-
glement in terms of Bell inequalities that involving only two
measurement settings per observer. And a quadratic inequal-
ity of Bell operator for four-qubit systems has been obtained.
The Bell inequalities satisfied by fully separable, bi-separable
and tri-separable states of four-qubit systems are analytically
derived. Our approach and some of the obtained formulas can
be directly generalized to multipartite qubit systems.

However, our inequalities are not both sufficient and nec-
essary for separability of general four-qubit states. The sepa-
rability problem in terms of Bell inequalities has been solved
only for two-qubit case, any pure entangled two-qubit states
violate the CHSH inequality [26], as well as the three-qubit
case where Chen et al. [27] showed that all pure entangled
three-qubit states violate a Bell inequality. For mixed four-
qubit systems, the separability problem remains open. En-
drejat et al. [28] discussed the relations between optimization
operators and combination of the global entanglement mea-
sures. One may conjecture that to make the inequalities suf-
ficient conditions for separability of a four-qubit mixed state,

Figure 1 Projection of the state space onto the plane constituted by 〈D(1)
4 〉

and 〈D(3)
4 〉. The fully separable states are in the black region. The tri-

separable states ρ12−3−4 and ρ14−2−3 are located inside the white areas re-
spectively between black and gray areas. The bi-separable states ρ12−34,
ρ14−23, ρ1−234 and ρ3−124 are inside the gray area. The genuine entangled
states are located in the designated slash regions.
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in addition to our Bell operators, some new Bell operators are
needed.
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