3,015 research outputs found

    The Incredible Diversity of Fe-bearing Phases at Gusev Crater, Mars, According to the Mars Exploration Rover Moessbauer Spectrometer

    Get PDF
    The Mars Exploration Rover (MER) Spirit landed on the plains of Gusev Crater on 4 January 2004. One primary scientific objective for the mission is to characterize the mineralogical and elemental composition of surface materials, searching for evidence of water and clues for assessing past and current climates and their suitability for life [1]. The role of the Moessbauer (MB) spectrometer on Spirit is to provide quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. The speciation and distribution of Fe in Martian rock and soil constrains the primary rock types, redox conditions under which primary minerals crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering. In this abstract, we discuss the incredible diversity of Fe-bearing phases detected by Spirit s MB instrument during its first 540 sols of exploration at Gusev crater [2,3]

    Fe-Bearing Phases Indentified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    Get PDF
    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of approx.200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum

    Chemical Alteration on Mars Indicated by the Iron-Manganese Ratio

    Get PDF
    The Alpha Particle X-ray Spectrometers (APXS) onboard the Mars Exploration Rovers (MER) have measured the chemical compositions of over 400 samples on the surface of Mars. Fe and Mn are among the elements which are well established by this instrumentation. Fe2+ and Mn2+ have nearly the same ionic radii and distribute similarly in primary igneous rocks, maintaining a consistent Fe:Mn ratio. Upon exposure to an oxidative weathering environment, Fe 3+ and Mn4+ are commonly formed, and elemental fractionation can occur. Thus, altered samples will typically exhibit a Fe:Mn ratio different from precursor materials

    Magnetite in Martian Meteorite Mil 03346 and Gusev Adirondack Class Basalt: Moessbauer Evidence for Variability in the Oxidation State of Adirondack Lavas

    Get PDF
    The Moessbauer spectrometers on the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) have returned information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases [1,2,3]. To date, ~100 and ~85 surface targets have been analyzed by the Spirit and Opportunity spectrometers, respectively. Twelve component subspectra (8 doublets and 4 sextets) have been identified and most have been assigned to mineralogical compositions [4]. Two sextet subspectra result from the opaque and strongly magnetic mineral magnetite (Fe3O4 for the stoichiometric composition), one each for the crystallographic sites occupied by tetrahedrally-coordinated Fe3+ and by octahedrally-coordinated Fe3+ and Fe2+. At Gusev crater, the percentage of total Fe associated with magnetite for rocks ranges from 0 to ~ 35% (Fig. 1) [3]. The range for soils (~5 to ~12% of total Fe from Mt, with one exception) is narrower. The ubiquitous presence of Mt in soil firmly establishes the phase as the strongly magnetic component in martian soi

    Evaluating the reliability, validity and minimally important difference of the Taiwanese version of the diabetes quality of life (DQOL) measurement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few diabetes HRQOL instruments are available in Chinese language. We tested psychometric properties of a Diabetes Quality of Life (DQOL) in Chinese language for diabetes patients in Taiwan and estimated its minimally important differences (MIDs).</p> <p>Methods</p> <p>Data were collected from 337 patients treated in diabetes clinics of a Taiwan teaching hospital. Pearson's correlations among domain scores of the DQOL (satisfaction, impact, and worry), the D-39S (a diabetes-specific instrument, including domains of diabetes control, energy and mobility, social burden and anxiety and worry, and sexual functioning) and the RAND-12 (a generic instrument, including physical health composite (PHC) and mental health composite (MHC)) were estimated to determine convergent/discriminant validity. Known-groups validity was examined using 2-hour postprandial plasma glucose (2 h PPG), hemoglobin A1c (HbA1c)) and presence of complications (retinopathy, neuropathy, and diabetic foot complications rather than the known groups of cardiovascular and cerebrovascular complications). We used a combined anchor- and distribution-based approach to establish MIDs.</p> <p>Results</p> <p>The DQOL scores were more strongly correlated with the physical domains of the D-39S (diabetes control and energy and mobility) and RAND-12 PHC than psychological domains of the D-39S (social burden, anxiety and worry, and sexual functioning) and RAND-12 MHC. The DQOL showed satisfactory discriminative ability for the known groups of 2 h PPG and HbA1c (effect size (ES) ≥ 0.2) and retinopathy, neuropathy, and diabetic foot complications (ES ≥ 0.3), but less satisfactory for the known groups of cardiovascular and cerebrovascular complications. MIDs for the DQOL domains were 3–5 points for satisfaction, 4–5 points for impact, 6–8 points for worry, and 3–4 points for overall HRQOL.</p> <p>Conclusion</p> <p>We validated a DQOL in Chinese language for diabetes patients in Taiwan and provided MIDs to facilitate the measure of diabetes HRQOL.</p

    Aqueous Alteration on Mars: Evidence from Landed Missions

    Get PDF
    Mineralogical and geochemical data returned by orbiters and landers over the past 15 years have substantially enhanced our understanding of the history of aqueous alteration on Mars. Here, we summarize aqueous processes that have been implied from data collected by landed missions. Mars is a basaltic planet. The geochemistry of most materials has not been extensively altered by open-system aqueous processes and have average Mars crustal compositions. There are few examples of open-system alteration, such as Gale craters Pahrump Hills mudstone. Types of aqueous alteration include (1) acid-sulfate and (2) hydrolytic (circum-neutral/alkaline pH) with varying water-to-rock ratios. Several hypotheses have been suggested for acid-sulfate alteration including (1) oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials; (3) acid fog weathering of basaltic materials; and (4) near-neutral pH subsurface solutions rich in Fe (sup 2 plus) that rapidly oxidized to Fe (sup 3 plus) producing excess acidity. Meridiani Planums sulfate-rich sedimentary deposit containing jarosite is the most famous acid-sulfate environment visited on Mars, although ferric sulfate-rich soils are common in Gusev craters Columbia Hills and jarosite was recently discovered in the Pahrump Hills. An example of aqueous alteration under circum-neutral pH conditions is the formation of Fe-saponite with magnetite in situ via aqueous alteration of olivine in Gale craters Sheepbed mudstone. Circum-neutral pH, hydrothermal conditions were likely required for the formation of Mg-Fe carbonate in the Columbia Hills. Diagenetic features (e.g., spherules, fracture filled veins) indicate multiple episodes of aqueous alteration/diagenesis in most sedimentary deposits. However, low water-to-rock ratios are prominent at most sites visited by landed missions (e.g., limited water for reaction to form crystalline phases possibly resulting in large amounts of short-range ordered materials and little physical separation of primary and secondary materials). Most of the aqueous alteration appears to have occurred early in the planets history; however, minor aqueous alteration may be occurring at the surface today (e.g., thin films of water forming carbonates akin to those discovered by Phoenix)

    Automated Grouping of Opportunity Rover Alpha Particle X-Ray Spectrometer Compositional Data

    Get PDF
    The Alpha Particle X-ray Spectrometer (APXS) conducts high-precision in situ measurements of rocks and soils on both active NASA Mars rovers. Since 2004 the rover Opportunity has acquired around 440 unique APXS measurements, including a wide variety of compositions, during its 42+ kilometers traverse across several geological formations. Here we discuss an analytical comparison algorithm providing a means to cluster samples due to compositional similarity and the resulting automated classification scheme. Due to the inherent variance of elements in the APXS data set, each element has an associated weight that is inversely proportional to the variance. Thus, the more consistent the abundance of an element in the data set, the more it contributes to the classification. All 16 elements standard to the APXS data set are considered. Careful attention is also given to the errors associated with the composition measured by the APXS - larger uncertainties reduce the weighting of the element accordingly. The comparison of two targets, i and j, generates a similarity score, S(sub ij). This score is immediately comparable to an average ratio across all elements if one assumes standard weighted uncertainty. The algorithm facilitates the classification of APXS targets by chemistry alone - independent of target appearance and geological context which can be added later as a consistency check. For the N targets considered, a N by N hollow matrix, S, is generated where S = S(sup T). The average relation score, S(sub av), for target N(sub i) is simply the average of column i of S. A large S(sub av) is indicative of a unique sample. In such an instance any targets with a low comparison score can be classified alike. The threshold between classes requires careful consideration. Applying the algorithm to recent Marathon Valley targets indicates similarities with Burns formation and average-Mars-like rocks encountered earlier at Endeavour Crater as well as a new class of felsic rocks

    Investigation of Martian Aqueous Processes Using Multiple Alpha Particle X-ray Spectrometer (APXS) Datasets

    Get PDF
    The APXS instruments flown on the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Science Laboratory (MSL) Curiosity were based on the same fundamental design. The calibration effort of the MSL APXS used the same reference standards analyzed in the MER calibration which ensures that data produced by all three instruments provide the same compositional results for the same sample. This cross-calibration effort is unprecedented and allows direct comparisons and contrasts of samples analyzed at Gusev Crater by Spirit, Meridiani Planum by Opportunity, and Gale Crater by Curiosity

    Compositions of Diverse Noachian Lithologies at Marathon Valley, Endeavour Crater Rim, Mars

    Get PDF
    Mars Exploration Rover Opportunity has been exploring Meridiani Planum for 11+ years, and is presently investigating the geology of rim segments of 22 km diameter, Noachian-aged Endeavour crater. The Alpha Particle X-ray Spectrometer has determined the compositions of a pre-impact lithology and impact breccias representing ejecta from the crater. Opportunity is now investigating the head (higher elevation, western end) of Marathon Valley. This valley cuts eastward through the central portion of the Cape Tribulation rim segment and provides a window into the lower stratigraphic record of the rim. At the head of Marathon Valley is a shallow (few 10s of cm), ovoid depression approximately 2736 m in size, named Spirit of Saint Louis, that is surrounded by approximately 20-30 cm wide zone of more reddish rocks (red zone). Opportunity has just entered a region of Marathon Valley that shows evidence for Fe-Mg smectite in Compact Reconnaissance Imaging Spectrometer for Mars spectra indicating areally extensive and distinct lithologic units and/or styles of aqueous alteration. Rocks at the head of Marathon Valley and within Spirit of Saint Louis are breccias (valley-head rocks). In some areas, layering inside Spirit of Saint Louis appears continuous with the rocks outside. The valley-head rocks are of similar, generally basaltic composition. The continuity in composition, texture and layering suggest the valley-head rocks are coeval breccias, likely from the Endeavour impact. These local breccias are similar in non-volatile-element composition to breccias investigated elsewhere on the rim. Rocks within the red zone are like those on either side in texture, but have higher Al, Si and Ge, and lower S, Mn, Fe, Ni and Zn as compared to rocks on either side. The valley-head rocks have higher S than most Endeavour rim breccias, while red zone rocks are like those latter breccias in S. Patches within the rocks outside Spirit of Saint Louis have higher Al, Si and Ge indicating red-zone-style alteration extended beyond the narrow red zone. Rocks on either side of the red zone and patches within it have the multispectral signature (determined by Panoramic Camera) of red hematite indicating an oxidizing environment. The red zone appears to be a thin alteration zone marking the border of Spirit of Saint Louis, but the origin of this morphologic feature remains obscure

    Silica Retention and Enrichment in Open-System Chemical Weathering on Mars

    Get PDF
    Chemical signatures of weathering are evident in the Alpha Particle X-ray Spectrometer (APXS) datasets from Gusev Crater, Meridiani Planum, and Gale Crater. Comparisons across the landing sites show consistent patterns indicating silica retention and/or enrichment in open-system aqueous alteration
    • …
    corecore