3,749 research outputs found
Direct Observation of Long-Term Durability of Superconductivity in YBaCuO-AgO Composites
We report direct observation of long-term durability of superconductivity of
several YBaCuO-AgO composites that were first prepared and
studied almost 14 years ago [J. J. Lin {\it et al}., Jpn. J. Appl. Phys. {\bf
29}, 497 (1990)]. Remeasurements performed recently on both resistances and
magnetizations indicate a sharp critical transition temperature at 91 K. We
also find that such long-term environmental stability of high-temperature
superconductivity can only be achieved in YBaCuO with AgO
addition, but not with pure Ag addition.Comment: to be published in Jpn. J. Appl. Phy
Identification of SNP barcode biomarkers for genes associated with facial emotion perception using particle swarm optimization algorithm
BACKGROUND: Facial emotion perception (FEP) can affect social function. We previously reported that parts of five tested single-nucleotide polymorphisms (SNPs) in the MET and AKT1 genes may individually affect FEP performance. However, the effects of SNP-SNP interactions on FEP performance remain unclear. METHODS: This study compared patients with high and low FEP performances (n = 89 and 93, respectively). A particle swarm optimization (PSO) algorithm was used to identify the best SNP barcodes (i.e., the SNP combinations and genotypes that revealed the largest differences between the high and low FEP groups). RESULTS: The analyses of individual SNPs showed no significant differences between the high and low FEP groups. However, comparisons of multiple SNP-SNP interactions involving different combinations of two to five SNPs showed that the best PSO-generated SNP barcodes were significantly associated with high FEP score. The analyses of the joint effects of the best SNP barcodes for two to five interacting SNPs also showed that the best SNP barcodes had significantly higher odds ratios (2.119 to 3.138; P < 0.05) compared to other SNP barcodes. In conclusion, the proposed PSO algorithm effectively identifies the best SNP barcodes that have the strongest associations with FEP performance. CONCLUSIONS: This study also proposes a computational methodology for analyzing complex SNP-SNP interactions in social cognition domains such as recognition of facial emotion
Influence of Y-doped induced defects on the optical and magnetic properties of ZnO nanorod arrays prepared by low-temperature hydrothermal process
One-dimensional pure zinc oxide (ZnO) and Y-doped ZnO nanorod arrays have been successfully fabricated on the silicon substrate for comparison by a simple hydrothermal process at the low temperature of 90°C. The Y-doped nanorods exhibit the same c-axis-oriented wurtzite hexagonal structure as pure ZnO nanorods. Based on the results of photoluminescence, an enhancement of defect-induced green-yellow visible emission is observed for the Y-doped ZnO nanorods. The decrease of E(2)(H) mode intensity and increase of E(1)(LO) mode intensity examined by the Raman spectrum also indicate the increase of defects for the Y-doped ZnO nanorods. As compared to pure ZnO nanorods, Y-doped ZnO nanorods show a remarked increase of saturation magnetization. The combination of visible photoluminescence and ferromagnetism measurement results indicates the increase of oxygen defects due to the Y doping which plays a crucial role in the optical and magnetic performances of the ZnO nanorods
Measurement-device-independent quantum key distribution over untrustful metropolitan network
Quantum cryptography holds the promise to establish an
information-theoretically secure global network. All field tests of
metropolitan-scale quantum networks to date are based on trusted relays. The
security critically relies on the accountability of the trusted relays, which
will break down if the relay is dishonest or compromised. Here, we construct a
measurement-device-independent quantum key distribution (MDIQKD) network in a
star topology over a 200 square kilometers metropolitan area, which is secure
against untrustful relays and against all detection attacks. In the field test,
our system continuously runs through one week with a secure key rate ten times
larger than previous result. Our results demonstrate that the MDIQKD network,
combining the best of both worlds --- security and practicality, constitutes an
appealing solution to secure metropolitan communications.Comment: 17 pages, 4 figure
Electric-field control of magnetism in few-layered van der Waals magnet
Manipulating quantum state via electrostatic gating has been intriguing for
many model systems in nanoelectronics. When it comes to the question of
controlling the electron spins, more specifically, the magnetism of a system,
tuning with electric field has been proven to be elusive. Recently, magnetic
layered semiconductors have attracted much attention due to their emerging new
physical phenomena. However, challenges still remain in the demonstration of a
gate controllable magnetism based on them. Here, we show that, via ionic
gating, strong field effect can be observed in few-layered semiconducting
CrGeTe devices. At different gate doping, micro-area Kerr
measurements in the studied devices demonstrate tunable magnetization loops
below the Curie temperature, which is tentatively attributed to the moment
re-balance in the spin-polarized band structure. Our findings of electric-field
controlled magnetism in van der Waals magnets pave the way for potential
applications in new generation magnetic memory storage, sensors, and
spintronics.Comment: 8 pages, 4 figure
Dynamic maintenance model for high average-utility pattern mining with deletion operation
The high average-utility itemset mining (HAUIM) was established to provide a fair measure instead of genetic high-utility itemset mining (HUIM) for revealing the satisfied and interesting patterns. In practical applications, the database is dynamically changed when insertion/deletion operations are performed on databases. Several works were designed to handle the insertion process but fewer studies focused on processing the deletion process for knowledge maintenance. In this paper, we then develop a PRE-HAUI-DEL algorithm that utilizes the pre-large concept on HAUIM for handling transaction deletion in the dynamic databases. The pre-large concept is served as the buffer on HAUIM that reduces the number of database scans while the database is updated particularly in transaction deletion. Two upper-bound values are also established here to reduce the unpromising candidates early which can speed up the computational cost. From the experimental results, the designed PRE-HAUI-DEL algorithm is well performed compared to the Apriori-like model in terms of runtime, memory, and scalability in dynamic databases.publishedVersio
The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches
The CDEX Collaboration has been established for direct detection of light
dark matter particles, using ultra-low energy threshold p-type point-contact
germanium detectors, in China JinPing underground Laboratory (CJPL). The first
1 kg point-contact germanium detector with a sub-keV energy threshold has been
tested in a passive shielding system located in CJPL. The outputs from both the
point-contact p+ electrode and the outside n+ electrode make it possible to
scan the lower energy range of less than 1 keV and at the same time to detect
the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode
may also provide a more powerful method for signal discrimination for dark
matter experiment. Some key parameters, including energy resolution, dead time,
decay times of internal X-rays, and system stability, have been tested and
measured. The results show that the 1 kg point-contact germanium detector,
together with its shielding system and electronics, can run smoothly with good
performances. This detector system will be deployed for dark matter search
experiments.Comment: 6 pages, 8 figure
Incrementally Updating the Discovered High Average-Utility Patterns With the Pre-Large Concept
High average-utility itemset mining (HAUIM) is an extension of high-utility itemset mining (HUIM), which provides a reliable measure to reveal utility patterns by considering the length of the mined pattern. Some research has been conducted to improve the efficiency of mining by designing a variety of pruning strategies and effective frameworks, but few works have focused on the maintenance algorithms in the dynamic environment. Unfortunately, most existing works of HAUIM still have to rescan databases multiple times when it is necessary. In this paper, the pre-large concept is used to update the discovered HAUIs in the newly inserted transactions and reduce the time of the rescanning process. To further improve the performance of the developed algorithm, two new upper-bounds are also proposed to decrease the number of candidates for HAUIM. Experiments were performed to compare the previous Apriori-like method and the proposed APHAUP algorithm with the two new upper-bounds in terms of the number of maintenance patterns and runtime in several datasets. The experimental results show that the proposed APHAUP algorithm has excellent performance and good potential to be applied in real applications.publishedVersio
- …
