369 research outputs found

    Staggered intercalation of DNA duplexes with base-pair modulation by two distinct drug molecules induces asymmetric backbone twisting and structure polymorphism

    Get PDF
    The use of multiple drugs simultaneously targeting DNA is a promising strategy in cancer therapy for potentially overcoming single drug resistance. In support of this concept, we report that a combination of actinomycin D (ActD) and echinomycin (Echi), can interact in novel ways with native and mismatched DNA sequences, distinct from the structural effects produced by either drug alone. Changes in the former with GpC and CpG steps separated by a A:G or G:A mismatch or in a native DNA with canonical G:C and C:G base pairs, result in significant asymmetric backbone twists through staggered intercalation and base pair modulations. A wobble or Watson-Crick base pair at the two drug-binding interfaces can result in a single-stranded 'chair-shaped' DNA duplex with a straight helical axis. However, a novel sugar-edged hydrogen bonding geometry in the G:A mismatch leads to a 'curved-shaped' duplex. Two non-canonical G:C Hoogsteen base pairings produce a sharply kinked duplex in different forms and a four-way junction-like superstructure, respectively. Therefore, single base pair modulations on the two drug-binding interfaces could significantly affect global DNA structure. These structures thus provide a rationale for atypical DNA recognition via multiple DNA intercalators and a structural basis for the drugs' potential synergetic use

    Nonsteroidal Anti-Inflammatory Drugs for Wounds: Pain Relief or Excessive Scar Formation?

    Get PDF
    The inflammatory process has direct effects on normal and abnormal wound healing. Hypertrophic scar formation is an aberrant form of wound healing and is an indication of an exaggerated function of fibroblasts and excess accumulation of extracellular matrix during wound healing. Two cytokines—transforming growth factor-β (TGF-β) and prostaglandin E2 (PGE2)—are lipid mediators of inflammation involving wound healing. Overproduction of TGF-β and suppression of PGE2 are found in excessive wound scarring compared with normal wound healing. Nonsteroidal anti-inflammatory drugs (NSAIDs) or their selective cyclooxygenase-2 (COX-2) inhibitors are frequently used as a pain-killer. However, both NSAIDs and COX-2 inhibitors inhibit PGE2 production, which might exacerbate excessive scar formation, especially when used during the later proliferative phase. Therefore, a balance between cytokines and medication in the pathogenesis of wound healing is needed. This report is a literature review pertaining to wound healing and is focused on TGF-β and PGE2

    Fixel-Based Analysis Effectively Identifies White Matter Tract Degeneration in Huntington’s Disease

    Get PDF
    Microstructure damage in white matter might be linked to regional and global atrophy in Huntington’s Disease (HD). We hypothesize that degeneration of subcortical regions, including the basal ganglia, is associated with damage of white matter tracts linking these affected regions. We aim to use fixel-based analysis to identify microstructural changes in the white matter tracts. To further assess the associated gray matter damage, diffusion tensor-derived indices were measured from regions of interest located in the basal ganglia. Diffusion weighted images were acquired from 12 patients with HD and 12 healthy unrelated controls using a 3 Tesla scanner. Reductions in fixel-derived metrics occurs in major white matter tracts, noticeably in corpus callosum, internal capsule, and the corticospinal tract, which were closely co-localized with the regions of increased diffusivity in basal ganglia. These changes in diffusion can be attributed to potential axonal degeneration. Fixel-based analysis is effective in studying white matter tractography and fiber changes in HD

    Magnetic Interaction of Multifunctional Core–Shell Nanoparticles for Highly Effective Theranostics

    Get PDF
    The controlled size and surface treatment of magnetic nanoparticles (NPs) make one-stage combination feasible for enhanced magnetic resonance imaging (MRI) contrast and effective hyperthermia. However, superparamagnetic behavior, essential for avoiding the aggregation of magnetic NPs, substantially limits their performance. Here, a superparamagnetic core–shell structure is developed, which promotes the formation of vortex-like intraparticle magnetization structures in the remanent state, leading to reduced dipolar interactions between two neighboring NPs, while during an MRI scan, the presence of a DC magnetic field induces the formation of NP chains, introducing increased local inhomogeneous dipole fields that enhance relaxivity. The core–shell NPs also reveal an augmented anisotropy, due to exchange coupling to the high anisotropy core, which enhances the specific absorption rate. This in vivo tumor study reveals that the tumor cells can be clearly diagnosed during an MRI scan and the tumor size is substantially reduced through hyperthermia therapy by using the same FePt@iron oxide nanoparticles, realizing the concept of theranostics

    Enabling Lambertian-Like Warm White Organic Light-Emitting Diodes with a Yellow Phosphor Embedded Flexible Film

    Get PDF
    We demonstrate in this report a new constructive method of fabricating white organic light-emitting devices (OLEDs) with a flexible plastic film embedded with yellow phosphor. The flexible film is composed of polydimethylsiloxane (PDMS) and fabricated by using spin coating followed by peeling technology. From the results, the resultant electroluminescent spectrum shows the white OLED to have chromatic coordinates of 0.38 and 0.54 and correlated color temperature of 4200 K. The warm white OLED exhibits the yield of 10.3 cd/A and the luminous power efficiency of 5.4 lm/W at a luminance of 1000 cd/m2. A desirable Lambertian-like far-field pattern is detected from the white OLEDs with the yellow phosphor containing PDMS film. This method is simple, reproducible, and cost-effective, proving to be a highly feasible approach to realize white OLED

    Multidisciplinary Taiwan consensus for the use of conventional TACE in hepatocellular carcinoma treatment

    Get PDF
    Developed in early 1980s, transarterial chemoembolization (TACE) with Lipiodol was adopted globally after large-scale randomized control trials and meta-analyses proving its effectiveness were completed. Also known as “conventional TACE” (cTACE), TACE is currently the first-line treatment for patients with unresectable intermediate stage hepatocellular carcinoma (HCC) and delivers both ischemic and cytotoxic effects to targeted tumors. Although new technology and clinical studies have contributed to a more comprehensive understanding of when and how to apply this widely-adopted therapeutic modality, some of these new findings and techniques have yet to be incorporated into a guideline appropriate for Taiwan. In addition, differences in the underlying liver pathologies and treatment practices for transcatheter embolization between Taiwan and other Asian or Western populations have not been adequately addressed, with significant variations in the cTACE protocols adopted in different parts of the world. These mainly revolve around the amount and type of chemotherapeutic agents used, the type of embolic materials, reliance on Lipiodol, and the degree of selectiveness in catheter positioning. Subsequently, interpreting and comparing results obtained from different centers in a systematic fashion remain difficult, even for experienced practitioners. To address these concerns, we convened a panel of experts specializing in different aspects of HCC treatment to devise modernized recommendations that reflect recent clinical experiences, as well as cTACE protocols which are tailored for use in Taiwan. The conclusions of this expert panel are described herein

    4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The crude extract of the fruit bearing plant, <it>Physalis peruviana </it>(golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown.</p> <p>Methods</p> <p>Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug.</p> <p>Results</p> <p>It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (<it>p </it>< 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (<it>p </it>< 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC<sub>50</sub>) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G<sub>1 </sub>accumulation and slight arrest at the G<sub>2</sub>/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G<sub>2</sub>/M arrest for H1299 cells treated with 5 μg/mL for 24 h.</p> <p>Conclusions</p> <p>In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.</p
    corecore