378 research outputs found

    Unified Visual Relationship Detection with Vision and Language Models

    Full text link
    This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets. Merging labels spanning different datasets could be challenging due to inconsistent taxonomies. The issue is exacerbated in visual relationship detection when second-order visual semantics are introduced between pairs of objects. To address this challenge, we propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models (VLMs). VLMs provide well-aligned image and text embeddings, where similar relationships are optimized to be close to each other for semantic unification. Our bottom-up design enables the model to enjoy the benefit of training with both object detection and visual relationship datasets. Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model. UniVRD achieves 38.07 mAP on HICO-DET, outperforming the current best bottom-up HOI detector by 14.26 mAP. More importantly, we show that our unified detector performs as well as dataset-specific models in mAP, and achieves further improvements when we scale up the model. Our code will be made publicly available on GitHub.Comment: Accepted to ICCV 2023. Code is available at https://github.com/google-research/scenic/tree/main/scenic/projects/univr

    Smooth-Muscle BMAL1 Participates in Blood Pressure Circadian Rhythm Regulation

    Get PDF
    As the central pacemaker, the suprachiasmatic nucleus (SCN) has long been considered the primary regulator of blood pressure circadian rhythm; however, this dogma has been challenged by the discovery that each of the clock genes present in the SCN is also expressed and functions in peripheral tissues. The involvement and contribution of these peripheral clock genes in the circadian rhythm of blood pressure remains uncertain. Here, we demonstrate that selective deletion of the circadian clock transcriptional activator aryl hydrocarbon receptor nuclear translocator-like (Bmal1) from smooth muscle, but not from cardiomyocytes, compromised blood pressure circadian rhythm and decreased blood pressure without affecting SCN-controlled locomotor activity in murine models. In mesenteric arteries, BMAL1 bound to the promoter of and activated the transcription of Rho-kinase 2 (Rock2), and Bmal1 deletion abolished the time-of-day variations in response to agonist-induced vasoconstriction, myosin phosphorylation, and ROCK2 activation. Together, these data indicate that peripheral inputs contribute to the daily control of vasoconstriction and blood pressure and suggest that clock gene expression outside of the SCN should be further evaluated to elucidate pathogenic mechanisms of diseases involving blood pressure circadian rhythm disruption

    Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum

    Get PDF
    Coriandrum sativum (Coriander) or Chinese parsley is a culinary herb with multiple medicinal effects, which is widely used in cooking and traditional medicine. It is enriched with essential oils and anti-oxidant compounds with unknown significance. To explore the untapped reservoir of Coriander, we studied the transcriptome and metabolic profiles from three developmental stages. Here, we identified 10 tyrosine metabolic pathway-related genes (TMPRGs), six porphyrins and chlorophyll metabolic pathway-related genes (PCMPRGs), and five Vitamin E metabolic pathway-related genes (VEMPRGs). These genes were associated with the early development of Coriander. Our analysis suggests that these pathways are involved in the production of critical phenolic metabolites. Furthermore, we constructed the interaction network between these pathway-related genes and transcription factors (TFs), which supported the regulatory pathways for phenolic metabolites. Interestingly, we identified several nutritional or medicinally relevant metabolites, including 59 phenols, two polyamines, 12 alkaloids, and one terpenoid. The higher concentrations of metabolites were from caffeic acid, agmatine, and its derivatives. We found higher levels of caffeic acid and agmatine at 30 days compared to 60 or 90 days. This study provides evidence to stimulate further investigation of the role of these metabolites in medicinal and nutritional research

    VideoGLUE: Video General Understanding Evaluation of Foundation Models

    Full text link
    We evaluate existing foundation models video understanding capabilities using a carefully designed experiment protocol consisting of three hallmark tasks (action recognition, temporal localization, and spatiotemporal localization), eight datasets well received by the community, and four adaptation methods tailoring a foundation model (FM) for a downstream task. Moreover, we propose a scalar VideoGLUE score (VGS) to measure an FMs efficacy and efficiency when adapting to general video understanding tasks. Our main findings are as follows. First, task-specialized models significantly outperform the six FMs studied in this work, in sharp contrast to what FMs have achieved in natural language and image understanding. Second,video-native FMs, whose pretraining data contains the video modality, are generally better than image-native FMs in classifying motion-rich videos, localizing actions in time, and understanding a video of more than one action. Third, the video-native FMs can perform well on video tasks under light adaptations to downstream tasks(e.g., freezing the FM backbones), while image-native FMs win in full end-to-end finetuning. The first two observations reveal the need and tremendous opportunities to conduct research on video-focused FMs, and the last confirms that both tasks and adaptation methods matter when it comes to the evaluation of FMs

    Effects of crude fiber level on growth performance, serum biochemical indicators, and digestibility in zhedong white geese

    Get PDF
    The purpose of this study was to investigate the feasibility and supplementation level of rice hull as a dietary fiber source for geese. The effect of rice hull addition level on growth performance, serum biochemical indices, and digestive performance of geese was explored. Three hundred 28-day-old Zhedong white geese (half male and half female) with similar body weights were selected and divided into three groups. The crude fiber (CF) level of the groups was 4.8%, 6.1% and 6.9%, respectively. The pre-feeding period was 7 days, and the formal test period was 21 days. The growth performance and serum biochemical indexes, amylase, lipase, and protease activities, and apparent digestibility were determined. CF level of 6.1% and 6.9% were higher than 4.8%, but the feed/gain at 6.9% CF level was higher than that at 4.8% (P<0.05). Serum total cholesterol and high-density lipoprotein cholesterol concentrations decreased at CF levels of 6.1% and 6.9%, and insulin or insulin-like growth factor-1 levels were increased. The intestinal amylase activity at 6.9% CF level was lower than that at 6.1%. In contrast, pancreatic amylase activity at 6.9% CF level was higher than that at 4.8%. The digestibility of crude ash and crude fat in CF level of 6.9% and 6.1% were lower than that at 4.8%, whereas the digestibility of crude protein increased. Rice hull as the main fiber source, with fiber level between 6.1% and 6.9%, maintains growth performance and improves some beneficial serum biochemical indicator levels and crude protein digestibility

    Cerebral Small Vessel Disease Burden Is Associated with Motor Performance of Lower and Upper Extremities in Community-Dwelling Populations

    Get PDF
    Objective: To investigate the correlation between cerebral small vessel disease (CSVD) burden and motor performance of lower and upper extremities in community-dwelling populations.Methods: We performed a cross-sectional analysis on 770 participants enrolled in the Shunyi study, which is a population-based cohort study. CSVD burden, including white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMBs), perivascular spaces (PVS), and brain atrophy were measured using 3T magnetic resonance imaging. All participants underwent quantitative motor assessment of lower and upper extremities, which included 3-m walking speed, 5-repeat chair-stand time, 10-repeat pronation–supination time, and 10-repeat finger-tapping time. Data on demographic characteristics, vascular risk factors, and cognitive functions were collected. General linear model analysis was performed to identify potential correlations between motor performance measures and imaging markers of CSVD after controlling for confounding factors.Results: For motor performance of the lower extremities, WMH was negatively associated with gait speed (standardized β = -0.092, p = 0.022) and positively associated with chair-stand time (standardized β = 0.153, p &lt; 0.0001, surviving FDR correction). For motor performance of the upper extremities, pronation–supination time was positively associated with WMH (standardized β = 0.155, p &lt; 0.0001, surviving FDR correction) and negatively with brain parenchymal fraction (BPF; standardized β = -0.125, p = 0.011, surviving FDR correction). Only BPF was found to be negatively associated with finger-tapping time (standardized β = -0.123, p = 0.012). However, lacunes, CMBs, or PVS were not found to be associated with motor performance of lower or upper extremities in multivariable analysis.Conclusion: Our findings suggest that cerebral microstructural changes related to CSVD may affect motor performance of both lower and upper extremities. WMH and brain atrophy are most strongly associated with motor function deterioration in community-dwelling populations

    Low-mass dark matter search results from full exposure of PandaX-I experiment

    Full text link
    We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1\;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid xenon target mass of 54.0\,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10\,GeV/c2^2, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12. Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as submitted to PR
    • …
    corecore