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Abstract
Coriandrum sativum (Coriander) or Chinese parsley is a culinary herb with multiple medicinal effects, which is widely used in 
cooking and traditional medicine.  It is enriched with essential oils and anti-oxidant compounds with unknown significance.  To 
explore the untapped reservoir of Coriander, we studied the transcriptome and metabolic profiles from three developmental 
stages.  Here, we identified 10 tyrosine metabolic pathway-related genes (TMPRGs), six porphyrins and chlorophyll 
metabolic pathway-related genes (PCMPRGs), and five Vitamin E metabolic pathway-related genes (VEMPRGs).  These 
genes were associated with the early development of Coriander.  Our analysis suggests that these pathways are involved 
in the production of critical phenolic metabolites.  Furthermore, we constructed the interaction network between these 
pathway-related genes and transcription factors (TFs), which supported the regulatory pathways for phenolic metabolites.  
Interestingly, we identified several nutritional or medicinally relevant metabolites, including 59 phenols, two polyamines, 12 
alkaloids, and one terpenoid.  The higher concentrations of metabolites were from caffeic acid, agmatine, and its derivatives.  
We found higher levels of caffeic acid and agmatine at 30 days compared to 60 or 90 days.  This study provides evidence 
to stimulate further investigation of the role of these metabolites in medicinal and nutritional research.  

Keywords: metabolomics, transcriptome, regulatory network, phenolic compounds, Coriander

1. Introduction

Coriandrum sativum (Coriander) is a herbaceous plant 
with both nutritional and medicinal properties (Yella et al. 
2019).  Originating in the Mediterranean region, Coriander 
is now a global crop consumed in most parts of the world.  
Coriander leaves can stimulate appetite and help digestion.  
It secretes abundant phenolic compounds (Laribi et  al. 
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2015) with medicinal and nutritional properties.  These 
phenolic compounds play essential roles in human health 
by regulating metabolism, reducing chronic diseases, and 
inhibiting cell proliferation (Cory et al. 2018).  

The caffeic acid extracted from Coriander has antioxidant 
and inhibitory effects on leukemic cell growth (Habtemariam 
2017).  It is known to inhibit the hepatitis C virus (Tanida et al. 
2015) and Staphylococcus aureus bacterium (Matejczyk 
et  al. 2017).  Most of these compounds are still under 
investigation for their anti-inflammatory, anti-fungal, and anti-
tumor activities.  Coriander is also rich in agmatine, which is 
a polyamine analog transformed by arginine decarboxylase 
(Laube and Bernstein 2017).  Agmatine possesses a wide 
range of biological effects including stimulating expression 
of nutritional factors and adult neurogenesis (Neis et  al. 
2017).  Agmatine is also a candidate drug for the treatment of 
severe depression (Freitas et al. 2016) and has been found 
to inhibit nicotine withdrawal-induced cognitive deficits in rats 
(Wiśniewska et al. 2017; Kotagale et al. 2018).  

As mentioned above, Coriander has high nutritional and 
medicinal value, including vitamins, anti-tumor activity, and 
others.  However, much less is known about the secretory 
pathways and genes involved in the production of these 
compounds, including phenols, caffeic acid, and agmatine.  
Recently, high-quality next-generation sequencing datasets 
from Coriander were developed through advanced methods 
like PacBio and Illumina sequencing technology (Choudhary 
et al. 2019; Song et al. 2019; Tulsani et al. 2020).  To explore 
the metabolic profile, we further studied the transcriptomic 
profile of Coriander at three developmental stages.  This 
study provides the guideline for harvest time with regard to 
the cultivation, consumption, and processing of Coriander 
without losing most of its nutritional value.  Here, using RNA-
seq and metabolomics datasets, we report the differentially 
expressed genes (DEGs) and differential metabolites (DMs) 
from three developmental stages of Coriander.  

2. Materials and methods

2.1. Materials and growth conditions

The Coriander line “SJ01” was selected for this study, as 
the genome sequence from this species has been published 
recently (Song et  al. 2019).  Seeds were grown in pots 
containing soil:vermiculite mixture (3:1) in a controlled-
environment growth chamber.  The normal growth conditions 
were programmed for 16/8 h at 22/18°C for day/night, 
relative humidity of ~60%, and a light intensity of 3 000 lx.  

According to the growth phases of Coriander, three 
developmental stages of young seeding, metaphase, 
and anaphase at 30, 60, and 90 days, respectively, were 
examined in this study.  At 30 days, Coriander was in the 

fast-growing stage, and the average height was ~9.6 cm.  At 
60 days, it was in the stable growth stage, and the average 
height was ~15.8 cm.  At 90 days, Coriander was in the 
late vegetative growth stage, and the average height was 
~19.5 cm.  We randomly selected Coriander leaves from 11 
samples at each developmental stage, which were used for 
transcriptomics (three biological replicates) and metabolic 
(eight replicates) studies.  

2.2. Transcriptomics analysis

RNA extraction, library construction, and sequencing  All  
samples were treated with liquid nitrogen for quick freezing 
and stored at –80°C until further use.  The RNA was 
extracted with an RNA Kit (TIANGEN, Beijing, China) 
following the manufacturer’s instructions and then reverse 
transcribed into cDNA using PrimeScript RT Reagent Kit 
(TaKaRa, Dalian, China).  The ribosomal RNA was removed 
with Ribo-zero™ rRNA Removal kit.  The mRNA sample, 
thus enriched, was subjected to fragmentation buffer and 
then cDNA synthesis using random hexamer primers.

Libraries were prepared per manufacturer’s instructions 
and sequenced on Illumina HiSeqTM 4000 for paired-end 
sequencing.  For the transcriptome, three replicates at 
30 days were named as 30 d1–3, replicates at 60 days were 
named as 60 d1–3, and replicates at 90 days were named as 
90 d1–3.  The RNA-seq dataset produced is available in the 
Genome Sequence Archive in BIG Data Center and CGDB 
database (accession no.  CRA001656) (http://bigd.big.ac.cn/
gsa) (BIG Data Center Members 2019; Song et al. 2020).  
Gene expression analysis and qRT-PCR  Raw reads 
were filtered to obtain high quality reads using base-calling 
software from Illumina.  Filtered reads were aligned to 
the Coriander genome using HISAT Software (Kim et al. 
2015).  Using Python-based HTSeq Software (v0.11.2), 
we analyzed the gene expression level for each transcript 
(Anders et al. 2015).  The expected number of fragments 
per kilobase of transcript sequence per million of base 
pairs sequenced (FPKM) was used as the normalization 
method, which considers the effect of sequencing depth 
and gene length on fragment counts (Trapnell et al. 2010).  
DESeq2 Software was used to conduct DEGs detection with 
padj<0.05 (Love et al. 2014).  

The expression of selected genes was also checked 
using quantitative real-time PCR (qRT-PCR) with three 
replicates according to our previously reported methods 
(Song et  al. 2014, 2016).  The mRNA was translated to 
cDNA using PrimeScript cDNA Synthesis Kit (TaKaRa, 
Dalian, China).  Then, the cDNA was detected quantitatively 
by CFX96™ Real-Time System (C1000™ Thermal Cycler, 
Bio-Rad) using SYBR_Premix Ex TaqTM II Kit (TaKaRa, 
Dalian, China).  The primer sequences of examined genes 
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are list in the Appendix A1.
DEGs detection and cluster analysis  The hypothesis 
test probability was calculated according to a negative 
binomial distribution model.  The false discovery rate was 
derived using multiple hypothesis test corrections.  Finally, 
DEGs were defined by the criteria of padj<0.05 and log2 
|fold-change|>1 (Anders and Huber 2010).

We used the H-cluster R script to cluster the relative 
expression levels of differential genes.  The clustering 
algorithm classified the DEGs into several clusters, and the 
genes in the same cluster had similar expression trends.  
The common and specific numbers of DEGs groups were 
plotted with Venn diagrams using R script.
Gene function annotation and enrichment analyses  The 
Gene Ontology (GO) enrichment analysis of DEGs was 
performed using GOseq Software based on non-central 
hypergeometric distribution with the corrected P-value<0.05 
(Young et al. 2010).  GO annotations were obtained through 
the HMMscan search.  Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis was conducted 
using KOBAS Software (Kanehisa et al. 2008).

2.3. Metabolomics analysis

Metabolite extraction and detection  The Coriander 
leaves were also simultaneously collected for metabolomics 
analysis and subjected to liquid chromatography-mass 
spectrometry (LC-MS) technology (Artati et al. 2019).  Eight 
replicates at 30 days were named as xM1–xM8 (30  d), 
replicates at 60 days were named as yM1–yM8 (60 d), and 
replicates at 90 days were named as zM1–zM8 (90 d).  

The data for retention times and peak shapes were 
extracted using Compound discover software from 
ThermoFisher scientific (https://www.thermofisher.com/
us/en/home.html).  The full-scan mass spectrogram was 
used to determine the exact molecular weight, mass 
number deviation, and ion information.  The compounds 
were identified by searching through the mzCloud 
database (https://www.mzcloud.org/), which consists of the 
fragmentation mode, energy, actual collected secondary, 
and multi-stage mass spectrometry data.
Differential metabolites (DMs) detection  We conducted 
a multivariate statistical analysis of metabolites, including 
principal component analysis (PCA) and partial least 
squares discrimination analysis (PLS-DA), to reveal the 
differences of the metabolic compositions among different 
developmental stages (David and Jacobs 2014; Gromski 
et al. 2015).  The variable importance in the projection (VIP) 
value of the first principal component with the PLS-DA Model 
and the P-value of T-test were used to detect the DMs (Cho 
et al. 2008).  The thresholds were set as VIP>1, fold-change 
>2.0 or <0.5, and P-value<0.05 according to a previous 

report (Li et  al. 2019).  The hierarchical clustering and 
metabolite-metabolite correlation analysis were conducted 
to reveal the relationship between metabolites and samples 
(Beshir et al. 2019).  The Z-score was calculated from the 
mean and standard deviation of the reference dataset (Ben 
Salah et al. 2017).  

2.4. Integrative analysis of metabolome and 
transcriptome

The Pfam database (http://pfam.sanger.ac.uk/) was 
searched to identify transcription factors (TFs) with the 
E-value<1e-4 setting.  Pearson’s correlation coefficients 
(PCCs) between metabolic pathway-related genes and TFs 
were calculated using in-house Perl scripts from the gene 
expression values of the three developmental stages.  The 
positive and negative regulatory relationships were defined 
as PCC>0.99 and PCC<–0.99, respectively.  The interaction 
networks between metabolic pathway-related genes and 
TFs were constructed using Gephi Software (https://gephi.
org).  For pathway-specific gene sequences, such as 
tyrosine and Vitamin E metabolism pathways, we compared 
Coriander sequences with the related Arabidopsis genes in 
these pathways using Basic Local Alignment Search Tool 
(BLAST), and the screening criteria were E-value<1e-5 with 
identity value>50%.

3. Results

3.1. Transcriptomic analyses of the three 
developmental stages

DEGs analyses  The high-quality bases from nine samples, 
including three developmental stages of Coriander with 
three replicates, were over 6.98 Gb (Appendix B1-a).  The 
base percentages of Q30 in all samples were over 91.07% 
(Appendix B1-b).  The total matching rates of filtered reads 
to the reference genome were more than 92.1% (Appendix 
B1-c).  A total of 30 026 (73.68%) Coriander genes were 
detected in all three developmental stages, and 6 801 genes 
had no expression in any of the three developmental stages.  
The PCCs among each replicate were all greater than 0.84 
(Appendix A2), which indicated that the replicates were 
repeatable and accurate.  

We further identified a list of DEGs from the three 
developmental stages of Coriander (Appendices A3–A5).  
Throughout the manuscript, we will refer to 30 d vs. 60 d 
as Group I, 60 d vs. 90 d as Group II, and 30 d vs. 90 d as 
Group III for the comparisons.  In Group I, we found a total 
of 168 DEGs, of which 149 were up-regulated, and 19 were 
down-regulated (Fig. 1-A).  Among Group II, we found 409 
DEGs, including 224 up-regulated and 185 down-regulated.  
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In Group III, only 19 DEGs were obtained, including 12 up-
regulated and seven down-regulated.  Six candidate genes, 
mainly involved in the chlorophyll metabolic pathway, were 
further selected for qRT-PCR examination.  The quantitative 
expression with PCR was consistent with the transcriptome 
results (Appendix B2).

The Venn diagram shows the shared and unique numbers 
of genes among all three groups (Fig. 1-B).  There were 96 
unique DEGs for Group I, 324 DEGs for Group II, and five 
DEGs for Group III.  Interestingly, one gene Cs09G04288 
was found to be a common gene expressed among all 
developmental stages.  Based on the H-cluster analysis, 
six sub-clusters were obtained according to the expression 
trends or patterns at the three developmental stages 
(Appendix B3).  Within each sub-cluster, the genes had 
similar expression trends, and so these genes might play a 
synergistic role in different development stages of Coriander.
Functional enrichment analyses  The GO enrichment 
analysis showed the distribution of genes among various 
functions (Appendices A6–A8).  In total, 31 and eight terms 
were enriched in up-regulated genes in 30 d compared 
with 60 and 90 d, respectively (Appendices A6–A7, B4).  
However, only two enrichment terms were detected in down-
regulated genes in 60 d vs. 90 d (Appendices A8 and B5).  
Interestingly, we found most of the up-regulated genes in 
30 d compared with the other two stages were enriched in 
the photosynthesis pathway.  

Genes found to be upregulated in Group I (Appendices 
B6 and A9), Group II, and Group III (Appendices B6, 
A10–A11) were further explored with KEGG metabolic 
pathway analysis.  The results showed the interaction of 
pathways between photosynthesis, photosynthesis-antenna 
protein, Porphyrin, and chlorophyll metabolism, which was 
consistent with the GO enrichment analyses.

For the photosynthesis pathway, we detected 12 DEGs in 
Group I (Appendix A9).  Among them, seven and five genes 
were found to be part of the photosynthetic system I and II 
related genes, respectively.  All of these genes were found 
to be up-regulated during the early developmental stage 
(Appendices A3 and A9). Similarly, eight DEGs in Group II  
also belonged to photosynthesis pathway, including five 
from the photosynthetic system I, and three from system II.   
The expression analysis showed that all of them were up-
regulated in 30 d compared with 90 d (Appendices A4 and 
A10).

We identified a total of 20 and 13 upregulated genes in 
Group I and Group II, respectively.  These genes were part 
of the photosynthesis-antenna protein pathway (Appendices 
A9–A10).  Moreover, these DEGs were all up-regulated in  
30 d compared with 60 d and 90 d, and they were involved in 
the chlorophyll protein complex synthesis (Appendices A3–
A4, A9–A10).  In the porphyrin and chlorophyll metabolism 
pathway, we identified seven DEGs, and all of them were 
up-regulated in 30 d compared with 60 d (Appendix A9).  
Specific enzymes encoded by these seven DEGs were 
involved in the synthesis of chlorophyll (Appendices A3 
and A9).  

In conclusion, the up-regulated genes in photosynthesis 
and chlorophyll metabolism pathways were enriched in 
the early developmental stages compared to late stages.  
This indicates these genes play a crucial role in the early 
development of Coriander.

3.2. Metabolic analyses of the three developmental 
stages

Quantitative assessment of metabolites  We present the 
metabolic analyses of the three developmental stages (30, 
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Fig. 1  Transcriptomics analysis of the three developmental stages in Coriander.  A, numbers of differentially expressed genes 
(DEGs) among the three developmental stages.  B, the Venn diagrams of DEGs among the three developmental stages. 
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60, and 90 d) of Coriander with eight replicates (Appendix 
A12).  The correlation analysis yielded PCC close to one 
which assured the high-quality of samples and stability of 
the detection method (Appendix A13).

The metabolites with positive (pos) metabolites and 
negative (neg) ion modes were quantitatively analyzed 
and compared among different stages of the samples.  
The comparison groups were 60 d vs. 30 d (neg/pos), 90 d  
vs. 30 d (neg/pos), 90 d vs. 60 d (neg/pos) (Appendices 
A14–A19).  The PCA diagram of all samples showed the 
independent grouping of the metabolites among samples 
from 60 d vs. 30 d, and 90 d vs. 30 d (Appendix B7-a–d).  
However, the grouping among metabolites in 90 d vs. 60 d 
was not very clear (Appendix B7-e–f).  This phenomenon 
showed that there was a significant difference in the types 
of metabolites produced in 60 d vs. 30 d or 90 d vs. 30 d.  

Furthermore, the PLS-DA models for each comparison 
group were established.  The model evaluation parameter 
R2 was obtained by 7-fold cross-validation.  We found R2 
values of all samples were larger than 0.93, indicating the 
model used in this study was stable and reliable.  Using this 
model, we identified the trend of metabolites between groups 
(Appendix B8).  We later sorted and verified the PLS-DA 
model for all comparisons.  After verification, the Q2 of the 
model did not exceed the corresponding lines, indicating 
that the model did not appear to be overfitting (Appendix 
B9).  Not “overfitting” indicated that the model could better 
describe the sample and could be used as a prerequisite 
for the model biomarker search.  The mutual verification of 
these two models showed that it was feasible to group and 
compare metabolites in different developmental stages.
Differential metabolites (DMs) analyses  The nutrients 
in Coriander leaves have not been fully studied until 
now.  Based on our metabolic study, we detected higher 
concentrations of phenolic (59), two polyamines, 12 
alkaloids, and one diterpene compounds.  The secretion 
of these compounds differed in the three developmental 
stages (Appendix A20).  The subsequent analysis showed 
that 16 phenolic compounds belong to caffeic acid and its 
derivatives.  The concentrations of these compounds were 
higher at 30 d compared to 60 and 90 d (Fig. 2-A).  We found 
the concentrations of two polyamines, i.e., agmatine and its 
derivatives, were significantly higher at 30 days than the later 
stages (Appendix B8-a).  Agmatine has been discussed as a 
putative neurotransmitter (Stickle et al. 1996).  Caffeic acid 
is a known antioxidant compound and has been reported 
by several groups.

Overall, there were more significant DMs in 90 d vs. 30 d 
than the other two comparisons, whether using positive 
ion (1 025) or negative ion (442) modes (Table  1).  In 
contrast, the least significant DMs were found in 90 d vs. 
60 d.  Interestingly, we found that all the DMs which were 

down-regulated with both ion modes were more than those 
up-regulated in both 60 d vs. 30 d and 90 d vs. 30 d.  This 
phenomenon indicated that the content of similar types of 
DMs in 30 d was higher than in 60 and 90 d.  However, 
there were no differences for up- or down-regulated DMs 
in 90 d vs. 60 d.  In addition, the results showed that in the 
comparison of 60 d vs. 30 d and 90 d vs. 30 d, the DMs with 
positive ion mode numbered more than with the negative 
ion mode (Fig. 2-B; Table 1).

The Venn diagram showed the numbers of common and 
specific DMs between the comparison groups (Fig. 2-C).  
The results showed that several specific DMs with negative/
positive ion modes were detected in 60 d vs. 30 d (83/202), 
90 d vs. 30 d (90/288), and 90 d vs. 60 d (68/74).  A total 
of 16 DMs with negative and 21 with positive ion modes 
were common among all three comparisons.  In addition, 
the Z-score analysis showed a significant difference in the 
relative contents of DMs with negative ion mode at the same 
level of all three comparisons (Appendices B10 and B11). 
KEGG pathway enrichment analysis for metabolites  KEGG 
path enrichment analysis of DMs showed the changes 
in metabolic pathways during Coriander development 
(Appendices A21 and A22).  Interestingly, both 60 d vs. 
30 d and 90 d vs. 30 d DMs with negative ion mode were 
significantly enriched in the tyrosine metabolism pathway 
(Fig. 2-D; Appendices B12–B13, A21–A22).  In this pathway, 
17 DMs were detected, which were down-regulated in 60 d 
compared with 30 d (Appendix A21).  A total of 16 DMs was 
found in 90 d vs. 30 d, and all of them were down-regulated 
in 90 d compared with 30 d (Appendix A22).  

It is worth noting that most DMs of tyrosine metabolism 
pathways were the same in 60 d vs. 30 d and 90 d vs. 30 d, 
and only DMs Com-41-6neg (caffeic acid and its derivatives) 
was different between the two comparisons (Appendices 
A21 and A22).  Compared with the middle and late stages 
of Coriander development, the metabolic pathways in the 
early stage were significantly different, which was consistent 
with the results obtained by the transcriptome enrichment 
analysis.

3.3. Integrative analysis of transcriptome and 
metabolome

Based on the analysis of transcriptomes and metabolomes 
in different development stages of Coriander, we found 
that the expression trend of several genes was consistent 
with the trend of downstream metabolite content in multiple 
metabolic pathways, including TMPRGs, PCMPRGs, and 
VEMPRGs.  Furthermore, we constructed an interaction 
network between these pathway-related genes and TFs 
according to PCCs using Gephi Software (Fig. 3).  
Tyrosine metabolic pathway  The tyrosine metabolic 
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pathway was significantly enriched in 60 d vs. 30 d and 90 d 
vs. 30 d (Appendices A21–A22; Fig. 4-A).  The contents of 
fumarylacetoacetic acid, caffeic acid, and their derivatives 
of this pathway in 60 and 90 d were significantly lower than 
in 30 d (Fig. 4-B; Appendix A23).  

Caffeic acid is a phenolic compound, which plays an 
important role in regulating plant growth (Li et al. 2018; Liu 
et al. 2018).  However, the scope of our study is limited to this 
finding, and we did not explore the role of these compounds 
in plant growth.  We found that 16 compounds belonging 

to the caffeic acid category were enriched after 60 d, and 
the corresponding tyrosine metabolic pathway genes were 
upregulated.  This finding warrants the exploration of these 
phenolic compounds in detail.

Meanwhile, we retrieved five protein sequences that 
encode enzymes from the tyrosine metabolism pathway 
in Arabidopsis and one protein sequence from carrot.  
We obtained Coriander homologous genes by comparing 
these protein sequences using BLAST (Appendix A24).  
By integrating RNA-seq and metabolomics analysis, we 

Table 1  Summary of metabolites for comparisons of the three developmental stages of Coriander

Compared sample1) Number of metabolites Number of significant 
metabolites

Number of up-rich 
metabolites

Number of down-rich 
metabolites

60 d vs. 30 d pos 4 998 887 221 666
90 d vs. 30 d pos 4 998 1 025 237 788
90 d vs. 60 d pos 4 998 190 89 101
60 d vs. 30 d neg 1 569 379 27 352
90 d vs. 30 d neg 1 569 442 60 382
90 d vs. 60 d neg 1 569 182 98 84
1) The pos indicated the positive ion, and the neg indicated the negative ion.
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found the expression of several genes in tyrosine metabolic 
pathway had similar trends with the higher contents of these 
metabolites among the three stages, such as Cs05G01520, 
Cs10G01025, and CsUnG02440 (Fig. 4-B; Appendices 
B14–B15, A25).  The Arabidopsis gene AT2G02380 
was matched with five genes in Coriander (Appendix 
A24).  Among these genes, three genes (Cs04G01922, 
Cs04G01923, and Cs04G01924) were on chromosome 4, 
and they belonged to tandem repeat genes.  The homology 

score of gene Cs04G01923 was the lowest in the BLAST 
analysis, which indicated that this gene may have a different 
arrangement of tandem repeats and is unique to Coriander.  
The annotation showed that Cs04G01922 encoded an 
unnamed protein product; Cs04G01923 and Cs04G01924 
encoded glutathione S-transferase zeta class family 
protein.  We also found that the expression of Cs04G01923 
and Cs04G01924 was lower than that of Cs04G01922 at 
the three stages (Fig.  4-D).  The role of unknown gene 
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Cs04G01922 may be of interest considering its potential 
role in development.  

There are many studies indicating the role of transcription 
factors in the development of plants (Zhang et al. 2019; 
Zhao et al. 2019).  Based on the expression of TMPRGs 
and TFs, we constructed the interaction network between 
them according to the PCC using Gephi Software (Fig. 3).  
In the network, we detected 1 534 and 1 241 positive and 
negative regulatory interactions among TMPRGs and 
TFs, respectively (Fig.  3-A; Appendix A26).  There were 
more interactive edges for three TMPRGs (CsUnG02440, 
Cs04G01923, and CsUnG03263), and the total edge 
number was over 350 (Fig.  3-B; Appendix A26).  Seven 
TMPRGs had more edges with positive regulatory with TFs 
than positive regulatory, while we did not find a similar effect 
for the other three genes.  In total, 61 kinds of TFs had a 
regulatory relationship with TMPRGs (Fig. 3-C; Appendix 
A27).  The MYB TFs (293) had the most edges in the 
network, followed by AP2/ERF (185), NBS (162), and bHLH 

(153).  In addition, 45 kinds of TFs (72.58%) had higher 
edges number  with the positive regulatory than negative 
with TMPRGs (Fig. 3-C; Appendix A27).  
Porphyrin and chlorophyll metabolism pathway  In the 
transcriptome analysis of 30 d vs. 60 d, we identified seven 
significantly up-regulated genes enriched in porphyrin and 
chlorophyll metabolism using the KEGG (Appendices A9, 
A28 and B16).  Four of these seven genes were involved in 
the formation of pheophytin (Fig. 4-C), which can produce 
phytol under the action of chlorophyll-degrading enzymes 
(Krautler 2016).  In the integrative analysis of RNA-seq and 
metabolomics, we found the expression of these seven 
genes had similar trends with the content of metabolites of 
aminolevulinate at the three stages (Fig. 4-C; Appendices 
B17 and A28).

Based on the expression, we constructed the interaction 
network between PCMPRGs and TFs according to PCCs 
(Fig.  3).  We detected 387 positive and 1 348 negative 
regulatory interactions between six PCMPRGs and TFs 
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(Fig. 3-D; Appendix A29).  In this network analysis, there 
were more interactive edges for only one PCMPRG 
(Cs07G00690), and the total edge number was over 350 
(Fig. 3-E; Appendix A29).  All PCMPRGs had more edges 
with negative regulatory with TFs, which was significantly 
different from the TMPRGs network.  In total, 60 kinds of 
TFs had a regulatory relationship with PCMPRGs (Fig. 3-F; 
Appendix A30).  However, most kinds of TFs (54, 90.00%) 
had higher edges number with the negative regulatory than 
positive regulatory with PCMPRGs.  Only four TFs showed 
the higher edges number with positive regulatory with 
PCMPRGs, which was just the opposite from the TMPRGs 
network (Fig. 3-F;  Appendix A30).  
Vitamin E metabolic pathway  Based on the results above, 
we sorted out the pathway of synthesizing vitamin E from 
homogentisate and phytol (Fig. 4-E; Appendix A31) (Soll 
et al. 1985; DellaPenna 2005).  We compared the related 
protein sequences of the Vitamin E metabolic pathway in 
A. thaliana with the protein sequences of Coriander by 
BLAST (Appendix A32).  Combining it with the RNA-seq, 
we found that the expression of VTE1, PDS1, HST, and 
VTE5 was higher at 30 d than that at 60 and 90 d (Fig. 4-F; 
Appendix A33).

Based on the expression, we constructed the interaction 
network between VEMPRGs and TFs according to PCCs 
(Appendix B18).  In the network, 503 positive and 505 
negative regulatory relationships between five VEMPRGs 
and TFs were detected (Appendices B18-a and A34).  
We found more than 313 interactive edges for gene 
Cs08G02313 (Appendices B18-b and A34).  We found a 
total of 60 kinds of TFs had a regulatory relationship with 
VEMPRGs (Appendices B18-c and A35).  

4. Discussion

In this study, a large number of metabolites were significantly 
enriched during the growth stage of 30 days compared 
with 60 and 90 d in Coriander.  Our results showed no 
significant differences in transcriptomics and metabolomics 
changes between 60 and 90 d of growth.  We believe that 
the best harvest period for Coriander with enhanced nutrient 
compounds and yield is 30–60 d.  Several key genes and 
metabolites were detected, which were involved in the 
tyrosine metabolic pathway, porphyrin and chlorophyll 
metabolism pathway, and vitamin E metabolic pathway.

Based on previous research, it has been established that 
tyrosine is catalyzed by tyrosine aminotransferase (TAT) 
to form 4-hydroxyphenypyruvate (HPP) in the tyrosine 
metabolic pathway (Munir et al. 2019).  Caffeic acid and 
its derivatives can also produce HPP under the action 
of macrophage migration inhibitory factor (MIF).  Then, 
p-hydroxyphenylpyruvate dioxidase (PDS1) catalyzes HPP 

to reduce homogentisate, which is oxidized by homogentisate 
1,2-dioxygenase (HGO) to produce maleylacetoacetate.  
This forms fumarylacetoacetic acid under the catalysis of 
glutathione transferase (GSTZ2) (Wang et al. 2019).  Finally, 
fumarylacetoacetic acid forms fumaric acid and acetoacetic 
acid (Schenck and Maeda 2018).  In this study, we found 
the contents of fumarylacetoacetic acid, caffeic acid, and 
their derivatives in 30 d were significantly higher than in 60  
or 90 d.  These results indicated that the tyrosine pathway 
plays important roles in the coriander development at the 
early stage.

In plants, homogentisate can produce vitamin E under 
the action of specific enzymes (Grusak and DellaPenna 
1999).  Vitamin E is synthesized on the chloroplast 
membrane to prevent photooxidative stress, thus reducing 
the production of toxic free radicals and protecting photo-
cooperative devices (Ivanov 2014).  Vitamin E is one of the 
key substances related to photosynthesis (Smirnoff and 
Wheeler 2000).  Previous studies have shown that vitamin 
E can affect plant development by regulating the content of 
jasmonic acid in leaves (Munne-Bosch 2005; Munne-Bosch 
et al. 2007).  Therefore, we speculated that the decrease of 
caffeic acid induces the reduction of homogentisate, leading 
to a low amount of vitamin E production.  This result partially 
explained the decrease of photosynthesis found at 30 d vs. 
60 d according to the transcriptomics analyses.

Similar studies have shown that the free phytol produced 
by pheophytin degradation can be used as the precursor 
of vitamin E synthesis through the compensation pathway 
(Karunanandaa et al. 2005).  The content of vitamin E might 
be reduced with the decrease in phytol degradation.  We 
believe the slow growth of the Coriander at 60 days could 
be linked with decreased vitamin E.  

In this study, we found a greater number of up-regulated 
genes enriched in the photosynthesis and chlorophyll 
metabolism pathways in 30 days.  Our analysis showed 
increased amounts of metabolites in 30 d relative to 60 
and 90 d.  This phenomenon might be due to the fact that 
Coriander was in a fast-growing stage at 30 d, and needed 
to synthesize a large number of substances for growth.  
Therefore, the expression of genes related to photosynthesis 
and chlorophyll metabolism was significantly up-regulated, 
and the metabolite content was significantly increased at 
30 d compared to the other two stages.

Interestingly, caffeic acid is a substance with great benefits 
to human health.  The antioxidant, anti-inflammatory, anti-
fungal, and anti-tumor activities of caffeic acid indicate its 
important role in human health (Bhat et al. 2020; Ning et al. 
2020; Zhang et al. 2020).  Coriander contains an agmatine 
compound, which is a known neuromodulator and has a wide 
range of biological effects, such as the treatment of severe 
depression, anti-atherosclerotic action, and anti-oxidant 
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activity in neuronal cell injury (Ferlazzo et al. 2020; Li 
et  al. 2020).  In the metabolic analysis, the content of 
agmatine in Coriander growing at 30 days was significantly 
higher than that in 60 days.  Furthermore, the significantly 
higher expression of caffeic acid and agmatine related genes 
indicated that they play important roles at the early-stage 
development.  This study provides the basis for further 
research on these phenolic compounds extracted from 
Coriander for their effects on human health and medicine.  

5. Conclusion

Our analyses indicated that the tyrosine metabolic, 
porphyrin, chlorophyll, and vitamin E metabolic pathways 
are involved in the production and regulation of important 
phenolic metabolites in Coriander.  These pathways and 
genes are also crucial for early development of the plant.  
The interaction network construction of these pathway-
related genes and TFs provides strong support for the 
activation of genes related to the nutritional and medicinal 
value of Coriander.

Acknowledgements

This work was supported by the National Natural Science 
Foundation of China (31801856), the Hebei Province Higher 
Education Youth Talents Program, China (BJ2018016), 
and the Hebei Province Postgraduate Demonstration 
Course (Genomics) Construction Project in 2018, China 
(KCJSX2018053).

Declaration of competing interest 

The authors declare that they have no conflict of interest.

Appendices associated with this paper are available on 
http://www.ChinaAgriSci.com/V2/En/appendix.htm

References

Anders S, Huber W. 2010. Differential expression analysis for 
sequence count data. Genome Biology, 11, R106.

Anders S, Pyl P T, Huber W. 2015. HTSeq  - A Python 
framework to work with high-throughput sequencing data. 
Bioinformatics, 31, 166–169.

Artati A, Prehn C, Adamski J. 2019. LC-MS/MS-based 
metabolomics for cell cultures. Methods in Molecular 
Biology, 1994, 119–130.

Ben Salah N, Bejar D, Snène H, Ouahchi Y, Mehiri N, Louzir 
B. 2017. The Z-score: A new tool in the interpretation of 
spirometric data. La Tunisie Medicale, 95, 767–771.

Beshir W F, Tohge T, Watanabe M, Hertog M, Hoefgen R, 
Fernie A R, Nicolaï B M. 2019. Non-aqueous fractionation 

revealed changing subcellular metabolite distribution during 
apple fruit development. Horticulture Research, 6, 98.

Bhat W F, Ahmed A, Abbass S, Afsar M, Bano B, Masood A. 
2020. Deciphering the nature of caffeic acid to inhibit the 
HSA aggregation induced by glyoxal. Protein and Peptide 
Letters, 27, 725–735.

BIG Data Center Members. 2019. Database resources of the 
BIG data center in 2019. Nucleic Acids Research, 47, 
D8–D14.

Cho H W, Kim S B, Jeong M K, Park Y, Miller N G, Ziegler T 
R, Jones D P. 2008. Discovery of metabolite features for 
the modelling and analysis of high-resolution NMR spectra. 
International Journal of Data Mining and Bioinformatics, 2, 
176–192.

Choudhary S, Naika M B N, Sharma R, Meena R D, Singh R, 
Lal G. 2019. Transcriptome profiling of Coriander: A dual 
purpose crop unravels stem gall resistance genes. Journal 
of Genetics, 98, 19.

Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. 2018. The 
role of polyphenols in human health and food systems: A 
mini-review. Frontiers in Nutrition, 5, 87.

David C C, Jacobs D J. 2014. Principal component analysis: A 
method for determining the essential dynamics of proteins. 
Methods in Molecular Biology, 1084, 193–226.

DellaPenna D. 2005. A decade of progress in understanding 
vitamin E synthesis in plants. Journal of Plant Physiology, 
162, 729–737.

Ferlazzo N, Curro M, Giunta M L, Longo D, Rizzo V, Caccamo 
D, Ientile R. 2020. Up-regulation of HIF-1α is associated 
with neuroprotective effects of agmatine against rotenone-
induced toxicity in differentiated SH-SY5Y cells. Amino 
Acids, 52, 171–179.

Freitas A E, Neis V B, Rodrigues A L S. 2016. Agmatine, 
a potential novel therapeutic strategy for depression. 
European Neuropsychopharmacology, 26, 1885–1899.

Gromski P S, Muhamadali H, Ellis D I, Xu Y, Correa E, Turner 
M L, Goodacre R. 2015. A tutorial review: Metabolomics 
and partial least squares-discriminant analysis - a marriage 
of convenience or a shotgun wedding. Analytica Chimica 
Acta, 879, 10–23.

Grusak M A, DellaPenna D. 1999. Improving the nutrient 
composition of plants to enhance human nutrition and 
health. Annual Review of Plant Physiology and Plant 
Molecular Biology, 50, 133–161.

Habtemariam S. 2017. Protective effects of caffeic acid and the 
Alzheimer’s brain: An update. Mini Reviews in Medicinal 
Chemistry, 17, 667–674.

Ivanov B N. 2014. Role of ascorbic acid in photosynthesis. 
Biochemistry Biokhimiia, 79, 282–289.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh 
M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, 
Yamanishi Y. 2008. KEGG for linking genomes to life and 
the environment. Nucleic Acids Research, 36, D480–D484.

Karunanandaa B, Qi Q, Hao M, Baszis S R, Jensen P K, Wong 
Y H, Jiang J, Venkatramesh M, Gruys K J, Moshiri F, Post-
Beittenmiller D, Weiss J D, Valentin H E. 2005. Metabolically 



1817WU Tong et al.  Journal of Integrative Agriculture  2021, 20(7): 1807–1818

engineered oilseed crops with enhanced seed tocopherol. 
Metabolic Engineering, 5–6, 384–400.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced 
aligner with low memory requirements. Nature Methods, 
12, 357–360.

Kotagale N R, Ali M T, Chopde C T, Umekar M J, Taksande 
B G. 2018. Agmatine inhibits nicotine withdrawal induced 
cognitive deficits in inhibitory avoidance task in rats: 
Contribution of α(2)-adrenoceptors. Pharmacology 
Biochemistry and Behavior, 167, 42–49.

Krautler B. 2016. Breakdown of chlorophyll in higher plants 
- phyllobilins as abundant, yet hardly visible signs of 
ripening, senescence, and cell death. Angewandte Chemie 
International Edition, 55, 4882–4907.

Laribi B, Kouki K, M’Hamdi M, Bettaieb T. 2015. Coriander 
(Coriandrum sativum L.) and its bioactive constituents. 
Fitoterapia, 103, 9–26.

Laube G, Bernstein H G. 2017. Agmatine: Multifunctional arginine 
metabolite and magic bullet in clinical neuroscience? The 
Biochemical Journal, 474, 2619–2640.

Li X F, Zhu J Y, Tian L X, Ma X Y, Fan X, Luo L, Yu J, Sun Y, 
Yang X, Tang W Q, Ma W, Yan J, Xu X, Liang H P. 2020. 
Agmatine protects against the progression of sepsis through 
the imidazoline I2 receptor-ribosomal S6 kinase 2-nuclear 
factor-κB signaling pathway. Critical Care Medicine, 48, 
e40–e47.

Li X L, Zhang X P, Ye L, Kang Z J, Jia D H, Yang L F, Zhang 
B. 2019. LC-MS-based metabolomic approach revealed the 
significantly different metabolic profiles of five commercial 
truffle species. Frontiers in Microbiology, 10, 2227.

Li X Y, Wang L H, Wang S M, Yang Q, Zhou Q, Huang X H. 
2018. A preliminary analysis of the effects of bisphenol A 
on the plant root growth via changes in endogenous plant 
hormones. Ecotoxicology and Environmental Safety, 150, 
152–158.

Liu Q Q, Luo L, Zheng L Q. 2018. Lignins: Biosynthesis and 
biological functions in plants. International Journal of 
Molecular Sciences, 19, 335.

Love M I, Huber W, Anders S. 2014. Moderated estimation of 
fold change and dispersion for RNA-seq data with DESeq2. 
Genome Biology, 15, 550.

Matejczyk M, Swislocka R, Kalinowska M, Swidersk G, 
Lewandowsk W, Jablonska-Trypuo A. 2017. Monitoring 
of synergistic enhancement of caffeic acid on Escherichia 
coli K-12 reca::GFP strain treated with dacarbazine. Acta 
Poloniae Pharmaceutica, 74, 809–816.

Munir N, Cheng C Z, Xia C S, Xu X M, Nawaz M A, Iftikhar 
J, Chen Y K, Lin Y L, Lai Z X. 2019. RNA-seq analysis 
reveals an essential role of tyrosine metabolism pathway 
in response to root-rot infection in Gerbera hybrida. PLoS 
ONE, 14, e0223519.

Munne-Bosch S. 2005. Linking tocopherols with cellular 
signaling in plants. The New Phytologist, 166, 363–366.

Munne-Bosch S, Weiler E W, Alegre L, Muller M, Duchting 
P, Falk J. 2007. Alpha-tocopherol may influence cellular 
signaling by modulating jasmonic acid levels in plants. 

Planta, 225, 681–691.
Neis V B, Rosa P B, Olescowicz G, Rodrigues A L S. 2017. 

Therapeutic potential of agmatine for CNS disorders. 
Neurochemistry International, 108, 318–331.

Ning X H, Ren X B, Xie X F, Yan P, Wang D H, Huang X S. 
2020. A caffeic acid phenethyl ester analog inhibits the 
proliferation of nasopharyngeal carcinoma cells via targeting 
epidermal growth factor receptor. Journal of Biochemical 
and Molecular Toxicology, 34, e22491.

Schenck C A, Maeda H A. 2018. Tyrosine biosynthesis, 
metabolism, and catabolism in plants. Phytochemistry, 
149, 82–102.

Smirnoff N, Wheeler G L. 2000. Ascorbic acid in plants: 
Biosynthesis and function. Critical Reviews in Biochemistry 
and Molecular Biology, 35, 291–314.

Soll J, Schultz G, Joyard J, Douce R, Block M A. 1985. 
Localization and synthesis of prenylquinones in isolated 
outer and inner envelope membranes from spinach 
chloroplasts. Archives of Biochemistry and Biophysics, 
238, 290–299.

Song X M, Liu G F, Duan W K, Liu T K, Huang Z N, Ren J, Li 
Y, Hou X L. 2014. Genome-wide identification, classification 
and expression analysis of the heat shock transcription 
factor family in Chinese cabbage. Molecular Genetics and 
Genomics, 289, 541–551.

Song X M, Liu G F, Huang Z N, Duan W K, Tan H W, Li Y, Hou 
X L. 2016. Temperature expression patterns of genes and 
their coexpression with LncRNAs revealed by RNA-Seq in 
non-heading Chinese cabbage. BMC Genomics, 17, 297.

Song X M, Nie F L, Chen W, Ma X, Gong K, Yang Q H, Wang J 
P, Li N, Sun P C, Pei Q Y, Yu T, Hu J J, Li X Y, Wu T, Feng S 
Y, Li X Q, Wang X Y. 2020. Coriander Genomics Database: 
A genomic, transcriptomic, and metabolic database for 
Coriander. Horticulture Research, 7, 55.

Song X M, Wang J P, Li N, Yu J G, Meng F B, Wei C D, Liu 
C, Chen W, Nie F L, Zhang Z K, Gong K, Li X Y, Hu J J, 
Yang Q H, Li Y X, Li C J, Feng S Y, Guo H, Yuan J Q, 
Pei Q Y, et al. 2019. Deciphering the high-quality genome 
sequence of Coriander that causes controversial feelings. 
Plant Biotechnology Journal, 18, 1444–1456.

Stickle D, Bohrer A, Berger R, Morrissey J, Klahr S, Turk 
J. 1996. Quantitation of the putative neurotransmitter 
agmatine as the hexafluoroacetylacetonate derivative by 
stable Isotope dilution gas chromatography and negative-
ion chemical ionization mass spectrometry. Analytical 
Biochemistry, 238, 129–136.

Tanida I, Shirasago Y, Suzuki R, Abe R, Wakita T, Hanada 
K, Fukasawa M. 2015. Inhibitory effects of caffeic acid, a 
coffee-related organic acid, on the propagation of hepatitis 
C virus. Japanese Journal of Infectious Diseases, 68, 
268–275.

Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, 
van Baren M J, Salzberg S L, Wold B J, Pachter L. 2010. 
Transcript assembly and quantification by RNA-Seq reveals 
unannotated transcripts and isoform switching during cell 
differentiation. Nature Biotechnology, 28, 511–515.



1818 WU Tong et al.  Journal of Integrative Agriculture  2021, 20(7): 1807–1818

Tulsani N J, Hamid R, Jacob F, Umretiya N G, Nandha A K, 
Tomar R S, Golakiya B A. 2020. Transcriptome landscaping 
for gene mining and SSR marker development in Coriander 
(Coriandrum sativum L.). Genomics, 112, 1545–1553.

Wang M, Toda K, Block A, Maeda H A. 2019. TAT1 and 
TAT2 tyrosine aminotransferases have both distinct and 
shared functions in tyrosine metabolism and degradation in 
Arabidopsis thaliana. The Journal of Biological Chemistry, 
294, 3563–3576.

Wiśniewska A, Olszanecki R, Totoń-Żurańska J, Kuś K, 
Stachowicz A, Suski M, Gębska A, Gajda M, Jawień J, 
Korbut R. 2017. Anti-atherosclerotic action of agmatine in 
ApoE-knockout mice. International Journal of Molecular 
Sciences, 18, 1706.

Yella S S T, Kumar R N, Ayyanna C, Varghese A M, Amaravathi 
P, Vangoori Y. 2019. The combined effect of Trigonella 
foenum seeds and Coriandrum sativum leaf extracts 
in alloxan-induced diabetes mellitus wistar albino rats. 

Bioinformation, 15, 716–722.
Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene 

ontology analysis for RNA-seq: Accounting for selection 
bias. Genome Biology, 11, R14.

Zhang N, Chen Y, Zhao Y, Fan D, Li L, Yan B, Tao G, 
Zhao J, Zhang H, Wang M. 2020. Caffeic acid assists 
microwave heating to inhibit the formation of mutagenic and 
carcinogenic PhIP. Food Chemistry, 317, 126447.

Zhang Y B, Tang W, Wang L H, Hu Y W, Liu X W, Liu Y S. 2019. 
Kiwifruit (Actinidia chinensis) R1R2R3-MYB transcription 
factor AcMYB3R enhances drought and salinity tolerance 
in Arabidopsis thaliana. Journal of Integrative Agriculture, 
18, 417–427.

Zhao T T, Wang Z Y, Bao Y F, Zhang X C, Yang H H, Zhang 
D Y, Jiang J B, Zhang H, Li J F, Chen Q S, Xu X Y. 2019. 
Downregulation of the SL-ZH13 transcription factor gene 
expression decreases drought tolerance of tomato. Journal 
of Integrative Agriculture, 18, 1579–1586.

Executive Editor-in-Chief  HUANG San-wen
 Managing Editor  WENG Ling-yun


	Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum
	Authors

	Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum

