19 research outputs found

    Harmonizing Genetic Testing for Parkinson's Disease: Results of the PARKNET Multicentric Study

    Get PDF
    Background and Objective: Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. Methods: We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. Results: In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. Conclusions: This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Localization of Human RNase Z Isoforms: Dual Nuclear/Mitochondrial Targeting of the ELAC2 Gene Product by Alternative Translation Initiation

    Get PDF
    RNase Z is an endonuclease responsible for the removal of 3′ extensions from tRNA precursors, an essential step in tRNA biogenesis. Human cells contain a long form (RNase ZL) encoded by ELAC2, and a short form (RNase ZS; ELAC1). We studied their subcellular localization by expression of proteins fused to green fluorescent protein. RNase ZS was found in the cytosol, whereas RNase ZL localized to the nucleus and mitochondria. We show that alternative translation initiation is responsible for the dual targeting of RNase ZL. Due to the unfavorable context of the first AUG of ELAC2, translation apparently also starts from the second AUG, whereby the mitochondrial targeting sequence is lost and the protein is instead routed to the nucleus. Our data suggest that RNase ZL is the enzyme involved in both, nuclear and mitochondrial tRNA 3′ end maturation

    A survey of green plant tRNA 3'-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>tRNase Z removes the 3'-trailer sequences from precursor tRNAs, which is an essential step preceding the addition of the CCA sequence. tRNase Z exists in the short (tRNase Z<sup>S</sup>) and long (tRNase Z<sup>L</sup>) forms. Based on the sequence characteristics, they can be divided into two major types: bacterial-type tRNase Z<sup>S </sup>and eukaryotic-type tRNase Z<sup>L</sup>, and one minor type, <it>Thermotoga maritima </it>(TM)-type tRNase Z<sup>S</sup>. The number of tRNase Zs is highly variable, with the largest number being identified experimentally in the flowering plant <it>Arabidopsis thaliana</it>. It is unknown whether multiple tRNase Zs found in <it>A. thaliana </it>is common to the plant kingdom. Also unknown is the extent of sequence and structural conservation among tRNase Zs from the plant kingdom.</p> <p>Results</p> <p>We report the identification and analysis of candidate tRNase Zs in 27 fully sequenced genomes of green plants, the great majority of which are flowering plants. It appears that green plants contain multiple distinct tRNase Zs predicted to reside in different subcellular compartments. Furthermore, while the bacterial-type tRNase Z<sup>S</sup>s are present only in basal land plants and green algae, the TM-type tRNase Z<sup>S</sup>s are widespread in green plants. The protein sequences of the TM-type tRNase Z<sup>S</sup>s identified in green plants are similar to those of the bacterial-type tRNase Z<sup>S</sup>s but have distinct features, including the TM-type flexible arm, the variant catalytic HEAT and HST motifs, and a lack of the PxKxRN motif involved in CCA anti-determination (inhibition of tRNase Z activity by CCA), which prevents tRNase Z cleavage of mature tRNAs. Examination of flowering plant chloroplast tRNA genes reveals that many of these genes encode partial CCA sequences. Based on our results and previous studies, we predict that the plant TM-type tRNase Z<sup>S</sup>s may not recognize the CCA sequence as an anti-determinant.</p> <p>Conclusions</p> <p>Our findings substantially expand the current repertoire of the TM-type tRNase Z<sup>S</sup>s and hint at the possibility that these proteins may have been selected for their ability to process chloroplast pre-tRNAs with whole or partial CCA sequences. Our results also support the coevolution of tRNase Zs and tRNA 3'-trailer sequences in plants.</p

    How Do Human Cells React to the Absence of Mitochondrial DNA?

    Get PDF
    Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA) and the mitochondrial genome (mtDNA). The mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nDNA. Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. To investigate how the cellular transcriptome is modified in response to the absence of mtDNA, we used Affymetrix HG-U133A GeneChip arrays to study the gene expression profile of two human cell lines, 143BTK(-) and A549, which had been entirely depleted of mtDNA (rho(o) cells), and compared it with that of corresponding undepleted parental cells (rho(+) cells).Our data indicate that absence of mtDNA is associated with: i) a down-regulation of cell cycle control genes and a reduction of cell replication rate, ii) a down-regulation of nuclear-encoded subunits of complex III of the respiratory chain and iii) a down-regulation of a gene described as the human homolog of ELAC2 of E. coli, which encodes a protein that we show to also target to the mitochondrial compartment.Our results indicate a strong correlation between mitochondrial biogenesis and cell cycle control and suggest that some proteins could have a double role: for instance in controlling both cell cycle progression and mitochondrial functions. In addition, the finding that ELAC2 and maybe other transcripts that are located into mitochondria, are down-regulated in rho(o) cells, make them good candidates for human disorders associated with defective replication and expression of mtDNA

    Depletion of mtDNA: Syndromes and genes

    No full text
    Maintenance of mitochondrial DNA (mtDNA) requires the concerted activity of several nuclear-encoded factors that participate in its replication, being part of the mitochondrial replisome or ensuring the balanced supply of dNTPs to mitochondria. In the past decade, a growing number of syndromes associated with dysfunction due to tissue-specific depletion of mtDNA (MDS) have been reported. This article reviews the current knowledge of the genes responsible for these disorders, the impact of different mutations in the epidemiology of MDS and their role in the pathogenic mechanisms underlying the different clinical presentations. \ua9 2006 Mitochondria Research Society

    Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy

    No full text
    OBJECTIVE: Tumour-associated macrophages (TAMs) play key roles in tumour progression. Recent evidence suggests that TAMs critically modulate the efficacy of anticancer therapies, raising the prospect of their targeting in human cancer. DESIGN: In a large retrospective cohort study involving 110 patients with pancreatic ductal adenocarcinoma (PDAC), we assessed the density of CD68-TAM immune reactive area (%IRA) at the tumour-stroma interface and addressed their prognostic relevance in relation to postsurgical adjuvant chemotherapy (CTX). In vitro, we dissected the synergism of CTX and TAMs. RESULTS: In human PDAC, TAMs predominantly exhibited an immunoregulatory profile, characterised by expression of scavenger receptors (CD206, CD163) and production of interleukin 10 (IL-10). Surprisingly, while the density of TAMs associated to worse prognosis and distant metastasis, CTX restrained their protumour prognostic significance. High density of TAMs at the tumour-stroma interface positively dictated prognostic responsiveness to CTX independently of T-cell density. Accordingly, in vitro, gemcitabine-treated macrophages became tumoricidal, activating a cytotoxic gene expression programme, inhibiting their protumoural effect and switching to an antitumour phenotype. In patients with human PDAC, neoadjuvant CTX was associated to a decreased density of CD206+ and IL-10+ TAMs at the tumour-stroma interface. CONCLUSIONS: Overall, our data highlight TAMs as critical determinants of prognostic responsiveness to CTX and provide clinical and in vitro evidence that CTX overall directly re-educates TAMs to restrain tumour progression. These results suggest that the quantification of TAMs could be exploited to select patients more likely to respond to CTX and provide the basis for novel strategies aimed at re-educating macrophages in the context of CTX

    Identification of new mutations in the ETHE1 gene in a cohort of 14 patients presenting with ethylmalonic encephalopathy

    No full text
    Background: Ethylmalonic encephalopathy (EE) is a rare autosomal recessive metabolic disorder characterised by progressive encephalopathy, recurrent petechiae, acrocyanosis and chronic diarrhoea, with a fatal outcome in early in life. Methods: 14 patients with EE were investigated for mutations in the ETHE1 gene. Results: Of the 14 patients, 5 were found to carry novel mutations. Conclusions: This work expands our knowledge of the causative mutations of EE
    corecore