44 research outputs found

    Temperature characterization of the CITIROC front-end chip of the ASTRI SST-2M Cherenkov camera

    Get PDF
    The Cherenkov Imaging Telescope Integrated Read Out Chip, CITIROC, is the front-end chip of the camera for the ASTRI SST-2M, one of the prototypes for the small sized telescopes of the Cherenkov Telescope Array, CTA. The telescope, operating in the energy range from a few TeV to beyond 300 TeV, is characterized by innovative technological solutions. The optical system is arranged in a dual-mirror configuration and the focal plane camera consists of a matrix of multi-pixel Silicon Photo-Multipliers. Among others, one of the most important project issue consists in the thermal characterization of the camera that, in the ASTRI SST-2M prototype, is thermo-controlled in a narrow temperature range. A set of at least nine similar telescopes will form the ASTRI mini-array proposed to be installed at the CTA southern site. In the cameras of the ASTRI mini-array telescopes the thermal control could be relaxed with a considerable gain in terms of power consumption, cost and simplicity. So, a study of the temperature dependence of the camera components is needed. The present work addresses this issue showing the results of the measurements carried out on CITIROC as a function of the temperature. We focused our investigation on the pedestal stability, linearity of the charge output signal, preamplifier gain and trigger uniformity in the temperature range 15-30°C. Our results show, for each of the above-mentioned measurable quantities, that temperature dependency is at the level of a few percent

    The innovative Cherenkov camera based on SiPM sensors of the ASTRI-Horn telescope: from the T/M and electrical design to the full assembly and testing in a harsh environment

    Get PDF
    ASTRI-Horn is a prototypal telescope of an imaging atmospheric Cherenkov telescope developed by the Italian National Institute of Astrophysics (INAF), proposed for the Cherenkov Telescope Array (CTA) Observatory. The CTA Observatory represents the next generation of imaging atmospheric Cherenkov telescopes and will explore the very highenergy domain from a few tens of GeV up to few hundreds of TeV. It will be composed of large-, medium-, and small sized telescopes; ASTRI-Horn is an end-to-end prototype proposed for the Small Sized array. The main scientific instrument of the ASTRI-Horn telescope is an innovative and compact Camera with Silicon- Photomultiplier based detectors and a specifically designed fast read-out electronics based on a custom peak-detector mode. The thermo-mechanical assembly is designed to host both the entire electronics chain, from the sensors to the raw data transmission system and the calibration system, and the complete thermoregulation system. This contribution gives a high level description of the T/M and electrical design of the Cherenkov Camera, it describes the assembling procedure of its different subsystems and their integration into the complete camera system. A discussion about possible design improvements coming from the problems/difficulties encountered during assembly is also presented. Finally, results from engineering tests conducted in-field are also presented

    The ASTRI camera for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) foresees, in its southern site (Chile), the implementation of up to 70 small-sized telescopes (SSTs), which will extend the energy coverage up to hundreds of TeV. It has been proposed that one of the first set of CTA SSTs will be represented by the ASTRI mini-array, which includes (at least) nine ASTRI telescopes. The endto-end prototype of such telescopes, named the ASTRI SST-2M, is installed in Italy and it is now completing the overall commissioning and entering the science verification phase. ASTRI telescopes are characterized by an optical system based on a dual-mirror Schwarzschild-Couder design and a camera at the focal plane composed of silicon photomultiplier sensors managed by a fast read-out electronics specifically designed. Based on a custom peak-detector mode, the ASTRI camera electronics is designed to perform Cherenkov signal detection, trigger generation, digital conversion of the signals and data transmission to the camera server. In this contribution we will describe the main features of the ASTRI camera, its performance and results obtained during the commissioning phase of the ASTRI SST-2M prototype in view of the ASTRI mini-array implementation

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin
    corecore