4,190 research outputs found

    Paramagnetic limit of superconductivity in a crystal without inversion center

    Full text link
    The theory of paramagnetic limit of superconductivity in metals without inversion center is developed. There is in general the paramagnetic suppression of superconducting state. The effect is strongly dependent on field orientation in respect to crystal axes. The reason for this is that the degeneracy of electronic states with opposite momenta forming of Cooper pairs is lifted by magnetic field but for some field directions this lifting can be small or even absent.Comment: 9 pages, no figure

    Antiferromagnetic order in CeCoIn5 oriented by spin-orbital coupling

    Get PDF
    An incommensurate spin density wave (QQ phase) confined inside the superconducting state at high basal plane magnetic field is an unique property of the heavy fermion metal CeCoIn5_5. The neutron scattering experiments and the theoretical studies point out that this state come out from the soft mode condensation of magnetic resonance excitations. We show that the fixation of direction of antiferromagnetic modulations by a magnetic field reported by Gerber et al., Nat. Phys. {\bf 10}, 126 (2014) is explained by spin-orbit coupling. This result, obtained on the basis of quite general phenomenological arguments, is supported by the microscopic derivation of the χzz\chi_{zz} susceptibility dependence on the mutual orientation of the basal plane magnetic field and the direction of modulation of spin polarization in a multi-band metal.Comment: 7 pages plus 2 pages with 2 figure

    Pressure-temperature phase diagram of ferromagnetic superconductors

    Full text link
    The symmetry approach to the description of the (P,T) phase diagram of ferromagnet superconductors with triplet pairing is developed. Taking into account the recent experimental observations made on UCoGe it is considered the case of a crystal with orthorhombic structure and strong spin-orbital coupling. It is shown that formation of ferromagnet superconducting state from a superconducting state is inevitably accompanied by the first order type transition.Comment: 4 pages, 1 figur

    Superconductivity in ferromagnetic metals and in compounds without inversion centre

    Full text link
    The symmetry properties and the general overview of the superconductivity theory in the itinerant ferromagnets and in materials without space parity are presented. The basic notions of unconventional superconductivity are introduced in broad context of multiband superconductivity which is inherent property of ferromagnetic metals or metals without centre of inversion.Comment: 38 pages, no figure

    Magnetic order in Ce0.95Nd0.05CoIn5: the Q-phase at zero magnetic field

    Full text link
    We report neutron scattering experiment results revealing the nature of the magnetic order occurring in the heavy fermion superconductor Ce0.95Nd0.05CoIn5, a case for which an antiferromagnetic state is stabilized at a temperature below the superconducting transition one. We evidence an incommensurate order and its propagation vector is found to be identical to that of the magnetic field induced antiferromagnetic order occurring in the stoichiometric superconductor CeCoIn5, the so-called Q-phase. The commonality between these two cases suggests that superconductivity is a requirement for the formation of this kind of magnetic order and the proposed mechanism is the enhancement of nesting condition by d-wave order parameter with nodes in the nesting area.Comment: submitted to Phys. Rev. Lett. on June 30th, 201

    Nonuniform mixed-parity superfluid state in Fermi gases

    Full text link
    We study the effects of dipole interaction on the superfluidity in a homogeneous Fermi gas with population imbalance. We show that the Larkin-Ovchinnikov-Fulde-Ferrell phase is replaced by another nonuniform superfluid phase, in which the order parameter has a nonzero triplet component induced by the dipole interaction.Comment: 4 pages, 1 figur

    The ground state of binary systems with a periodic modulation of the linear coupling

    Full text link
    We consider a quasi-one-dimensional two-component systm, described by a pair of Nonlinear Schr\"{o}dinger/Gross-Pitaevskii Equations (NLSEs/GPEs), which are coupled by the linear mixing, with local strength Ω\Omega , and by the nonlinear incoherent interaction. We assume the self-repulsive nonlinearity in both components, and include effects of a harmonic trapping potential. The model may be realized in terms of periodically modulated slab waveguides in nonlinear optics, and in Bose-Einstein condensates too. Depending on the strengths of the linear and nonlinear couplings between the components, the ground states (GSs) in such binary systems may be symmetric or asymmetric. In this work, we introduce a periodic spatial modulation of the linear coupling, making Ω\Omega an odd, or even function of the coordinate. The sign flips of Ω(x)\Omega (x) strongly modify the structure of the GS in the binary system, as the relative sign of its components tends to lock to the local sign of Ω\Omega . Using a systematic numerical analysis, and an analytical approximation, we demonstrate that the GS of the trapped system contains one or several kinks (dark solitons) in one component, while the other component does not change its sign. Final results are presented in the form of maps showing the number of kinks in the GS as a function of the system's parameters, with the odd/even modulation function giving rise to the odd/even number of the kinks. The modulation of Ω(x)\Omega (x) also produces a strong effect on the transition between states with nearly equal and strongly unequal amplitudes of the two components.Comment: 8 pages, 3 figure

    Multidimensional Pattern Formation Has an Infinite Number of Constants of Motion

    Full text link
    Extending our previous work on 2D growth for the Laplace equation we study here {\it multidimensional} growth for {\it arbitrary elliptic} equations, describing inhomogeneous and anisotropic pattern formations processes. We find that these nonlinear processes are governed by an infinite number of conservation laws. Moreover, in many cases {\it all dynamics of the interface can be reduced to the linear time--dependence of only one ``moment" M0M_0} which corresponds to the changing volume while {\it all higher moments, MlM_l, are constant in time. These moments have a purely geometrical nature}, and thus carry information about the moving shape. These conserved quantities (eqs.~(7) and (8) of this article) are interpreted as coefficients of the multipole expansion of the Newtonian potential created by the mass uniformly occupying the domain enclosing the moving interface. Thus the question of how to recover the moving shape using these conserved quantities is reduced to the classical inverse potential problem of reconstructing the shape of a body from its exterior gravitational potential. Our results also suggest the possibility of controlling a moving interface by appropriate varying the location and strength of sources and sinks.Comment: CYCLER Paper 93feb00

    Structural and thermodynamic insight into the process of “weak” dimerization of the ErbB4 transmembrane domain by solution NMR

    Get PDF
    AbstractSpecific helix–helix interactions between the single-span transmembrane domains of receptor tyrosine kinases are believed to be important for their lateral dimerization and signal transduction. Establishing structure–function relationships requires precise structural-dynamic information about this class of biologically significant bitopic membrane proteins. ErbB4 is a ubiquitously expressed member of the HER/ErbB family of growth factor receptor tyrosine kinases that is essential for the normal development of various adult and fetal human tissues and plays a role in the pathobiology of the organism. The dimerization of the ErbB4 transmembrane domain in membrane-mimicking lipid bicelles was investigated by solution NMR. In a bicellar DMPC/DHPC environment, the ErbB4 membrane-spanning α-helices (651–678)2 form a right-handed parallel dimer through the N-terminal double GG4-like motif A655GxxGG660 in a fashion that is believed to permit proper kinase domain activation. During helix association, the dimer subunits undergo a structural adjustment (slight bending) with the formation of a network of inter-monomeric polar contacts. The quantitative analysis of the observed monomer–dimer equilibrium provides insights into the kinetics and thermodynamics of the folding process of the helical transmembrane domain in the model environment that may be directly relevant to the process that occurs in biological membranes. The lipid bicelles occupied by a single ErbB4 transmembrane domain behave as a true (“ideal”) solvent for the peptide, while multiply occupied bicelles are more similar to the ordered lipid microdomains of cellular membranes and appear to provide substantial entropic enhancement of the weak helix–helix interactions, which may be critical for membrane protein activity
    corecore