25 research outputs found

    HIV Infection of Naturally Occurring and Genetically Reprogrammed Human Regulatory T-cells

    Get PDF
    A T-cell subset, defined as CD4(+)CD25(hi) (regulatory T-cells [Treg cells]), was recently shown to suppress T-cell activation. We demonstrate that human Treg cells isolated from healthy donors express the HIV-coreceptor CCR5 and are highly susceptible to HIV infection and replication. Because Treg cells are present in very few numbers and are difficult to expand in vitro, we genetically modified conventional human T-cells to generate Treg cells in vitro by ectopic expression of FoxP3, a transcription factor associated with reprogramming T-cells into a Treg subset. Overexpression of FoxP3 in naïve human CD4(+) T-cells recapitulated the hyporesponsiveness and suppressive function of naturally occurring Treg cells. However, FoxP3 was less efficient in reprogramming memory T-cell subset into regulatory cells. In addition, FoxP3-transduced T-cells also became more susceptible to HIV infection. Remarkably, a portion of HIV-positive individuals with a low percentage of CD4(+) and higher levels of activated T-cells have greatly reduced levels of FoxP3(+)CD4(+)CD25(hi) T-cells, suggesting disruption of the Treg cells during HIV infection. Targeting and disruption of the T-cell regulatory system by HIV may contribute to hyperactivation of conventional T-cells, a characteristic of HIV disease progression. Moreover, the ability to reprogram human T-cells into Treg cells in vitro will greatly aid in decoding their mechanism of suppression, their enhanced susceptibility to HIV infection, and the unique markers expressed by this subset

    Identification of a CCR5-Expressing T Cell Subset That Is Resistant to R5-Tropic HIV Infection

    Get PDF
    Infection with HIV-1 perturbs homeostasis of human T cell subsets, leading to accelerated immunologic deterioration. While studying changes in CD4(+) memory and naïve T cells during HIV-1 infection, we found that a subset of CD4(+) effector memory T cells that are CCR7(−)CD45RO(−)CD45RA(+) (referred to as T(EMRA) cells), was significantly increased in some HIV-infected individuals. This T cell subset displayed a differentiated phenotype and skewed Th1-type cytokine production. Despite expressing high levels of CCR5, T(EMRA) cells were strikingly resistant to infection with CCR5 (R5)–tropic HIV-1, but remained highly susceptible to CXCR4 (X4)–tropic HIV-1. The resistance of T(EMRA) cells to R5-tropic viruses was determined to be post-entry of the virus and prior to early viral reverse transcription, suggesting a block at the uncoating stage. Remarkably, in a subset of the HIV-infected individuals, the relatively high proportion of T(EMRA) cells within effector T cells strongly correlated with higher CD4(+) T cell numbers. These data provide compelling evidence for selection of an HIV-1–resistant CD4(+) T cell population during the course of HIV-1 infection. Determining the host factors within T(EMRA) cells that restrict R5-tropic viruses and endow HIV-1–specific CD4(+) T cells with this ability may result in novel therapeutic strategies against HIV-1 infection

    A Herpesvirus Encoded Deubiquitinase Is a Novel Neuroinvasive Determinant

    Get PDF
    The neuroinvasive property of several alpha-herpesviruses underlies an uncommon infectious process that includes the establishment of life-long latent infections in sensory neurons of the peripheral nervous system. Several herpesvirus proteins are required for replication and dissemination within the nervous system, indicating that exploiting the nervous system as a niche for productive infection requires a specialized set of functions encoded by the virus. Whether initial entry into the nervous system from peripheral tissues also requires specialized viral functions is not known. Here we show that a conserved deubiquitinase domain embedded within a pseudorabies virus structural protein, pUL36, is essential for initial neural invasion, but is subsequently dispensable for transmission within and between neurons of the mammalian nervous system. These findings indicate that the deubiquitinase contributes to neurovirulence by participating in a previously unrecognized initial step in neuroinvasion

    Evidence for histidine-rich protein 2 immune complex formation in symptomatic patients in Southern Zambia

    Get PDF
    Abstract Background Rapid diagnostic tests based on histidine-rich protein 2 (HRP2) detection are the primary tools used to detect Plasmodium falciparum malaria infections. Recent conflicting reports call into question whether α-HRP2 antibodies are present in human host circulation and if resulting immune complexes could interfere with HRP2 detection on malaria RDTs. This study sought to determine the prevalence of immune-complexed HRP2 in a low-transmission region of Southern Zambia. Methods An ELISA was used to quantify HRP2 in patient sample DBS extracts before and after heat-based immune complex dissociation. A pull-down assay reliant on proteins A, G, and L was developed and applied for IgG and IgM capture and subsequent immunoprecipitation of any HRP2 present in immune complexed form. A total of 104 patient samples were evaluated using both methods. Results Immune-complexed HRP2 was detectable in 17% (18/104) of all samples evaluated and 70% (16/23) of HRP2-positive samples. A majority of the patients with samples containing immune-complexed HRP2 had P. falciparum infections (11/18) and were also positive for free HRP2 (16/18). For 72% (13/18) of patients with immune-complexed HRP2, less than 10% of the total HRP2 present was in immune-complexed form. For the remaining samples, a large proportion (≥ 20%) of total HRP2 was complexed with α-HRP2 antibodies. Conclusions Endogenous α-HRP2 antibodies form immune complexes with HRP2 in the symptomatic patient population of a low-transmission area in rural Southern Zambia. For the majority of patients, the percentage of HRP2 in immune complexes is low and does not affect HRP2-based malaria diagnosis. However, for some patients, a significant portion of the total HRP2 was in immune-complexed form. Future studies investigating the prevalence and proportion of immune-complexed HRP2 in asymptomatic individuals with low HRP2 levels will be required to assess whether α-HRP2 antibodies affect HRP2 detection for this portion of the transmission reservoir

    Retrograde transmission following CNS injection.

    No full text
    <p>Stereotactic injection route resulting in exposure of viral inoculum to SCN neurons. RGC ipsilateral projection to the SCN indicates route of viral transmission to the eye. (A) Representative image of virus fluorescence in the SCN of a coronal brain slice (region imaged is indicated by the doted box in right panel). 3 V, third ventricle. Scale bar = 40 µm. (B) Virus detected in the eye following retrograde transmission from the SCN is seen as punctate fluorescence in the RGCs of the ganglion cell layer (GCL) and in bipolar/amacrine cells of the inner nuclear layer (INL) of the retina. The bright fluorescent band near the top of the image is autofluorescence emitted from the retinal pigmented epithelium (RPE) at the back of the retina, and is not of viral origin. Scale bar = 10 µm.</p

    Retrograde transmission defect following anterior chamber injection.

    No full text
    <p>Anterior chamber injection route resulting in exposure of viral inoculum to the iris. The route of viral encephalitic spread is indicated: autonomic oculomotor nerve innervation of the iris from the ciliary ganglion (CG), which in turn receives innervation from parasympathetic neurons of the Edinger-Westphal nucleus (EW) of the midbrain. (A) Representative coronal images of EW (shown as a dashed box in coronal illustration) following anterior chamber injection or either wild-type or C26A virus. (B) Co-infection with PRV-152 and the C26A virus. Diffused GFP fluorescence and punctate RFP capsid signals are emitted from PRV-152 and the C26A viruses, respectively. Scale bars = 10 µm.</p

    Cytokine Production by FoxP3-Transduced T-cells

    No full text
    <p>CD4<sup>+</sup> naïve T-cells isolated from CB (CB-naïve) and AB (AB-naïve) and memory T-cells from AB (AB-memory) were transduced with HDV or HDV.FoxP3 as described in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020198#pbio-0020198-g005" target="_blank">Figure 5</a>. Transduced T-cells were purified through magnetic sorting of mCD24<sup>+</sup> cells and activated using plate-bound anti-CD3 and soluble anti-CD28 antibodies. Supernatants were collected at 18–24 h postactivation and analyzed for (A) IL-2 production or (B) IFNγ, IL-4, and IL-5 production from HDV or HDV.FoxP3-tranduced naïve T-cells, using CBA assay. The results represent five separate experiments from different donors with similar relative differences in cytokine production.</p
    corecore