4 research outputs found

    Microorganisms Resistant to White Phosphorus

    Get PDF
    We present preliminary results on the successful culturing of different microbial taxonomic groups on media containing white phosphorus (P4) as the sole source of phosphorus. The increase in culture resistance resulting from targeted selection was demonstrated. The highest concentration of P4 used in the study exceeds the threshold limit concentration of P4 in wastewater mud by 5000 times. Putative metabolites of P4 were also investigated. Keywords: biodegradation; white phosphorus; Aspergillus niger; Streptomyces sp. A

    Biological Degradation of Yellow (White) Phosphorus, a Compound of First Class Hazard

    No full text
    Abstract: Biodegradation is an important method for the purification of industrial sewage and environment from chemical wastes. The biodegradation of elemental yellow (white) phosphorus was observed only in our studies. It is one of the most hazardous contaminants of environment. White phosphorus and its transformation products are used in industry, agriculture, drug manufacture, and military. For the first time, we have obtained cultures of microorganisms growing in media containing white phosphorus in concentration much higher than the threshold limit concentration in sewage. Elemental phosphorus is the strongest poison as reduced compounds and phosphate esters. However, in completely oxidized state (inorganic phosphates) it is a biogenic element necessary for all forms of life. Earth biomass consists of phosphorus almost by 3%. Prospects of the biodegradation of toxic phosphorus compounds, and elemental phosphorus are huge. The practical implementation of new deactivation method showing a number of advantages will allow one to reduce considerably fines imposed on plants producing and consuming yellow phosphorus

    Π”ΠΎΠ±Π°Π²ΠΊΠΈ Π½Π° основС Амаранта багряного (Amaranthus cruentus L.) для усилСния ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Π΅Π·Π° ΠΏΡ€ΠΈ биоконвСрсии органичСских ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ²

    No full text
    Methane fermentation (biomethanogenesis) performed by a multicomponent microbial consortium under anaerobic conditions results in a mixture of approximately 65 % CH4, 30 % CO2, 1 % H2S and minor amounts of N2, O2, H2 and CO. The peculiarity of biomethanogenesis lies in the ability to convert almost all classes of organic compounds, household, agricultural and some industrial waste into biogas. We were the first to assess the efficiency of the biogas production from organic waste as influenced by various materials derived from amaranth ( Amaranthus cruentus L.) which were used as co-substrates. Our findings indicate that optimization of the substrate organic matter composition by using dry phytomass of amaranth plants or amaranth pulp which remains after removing all practically valuable substances makes it possible to produce biogas from sewage sludge. This facilitates solving ecological problems of waste disinfection and utilization, and gives us an alternative, cheap and renewable source for fuel. Cultivated A. cruentus is a high-yielding protein-rich crop. Its biomass serves as a reproducible raw material. In our previous works, we reported the technology for rutin, vegetable protein and pectin production from A. cruentus plants, and suggested a scheme for complex processing which includes extraction of these substances from amaranth dry phytomass in a single technological cycle. The pulp obtained after extraction of all valuable compounds was proposed as a co-substrate for organic waste anaerobic fermentation. We modeled the effect of amaranth-derived substances on biogas production in the laboratory bioreactor using large-tonnage urban sewage sludge as a substrate. It was shown that the doses of the additives affected the process, i.e. the excess of amaranth plant mass (74 % and 87 %) suppressed methanogenesis. The thermophilic (50 Β°C) fermentation was found to be superior to the mesophilic one (37 Β°Π‘), with the biogas production of 354 ml per gram of dry matter, when large-tonnage sewage sludge after filter press (45 % humidity) was fermented using amaranth pulp as the co-substrate. Moreover, in the presence of amaranth pulp, the biomethanogenesis under the mesophilic conditions also increased, the lag phase was almost absent, and the CH4 level throughout the experiment was about 60 %. As a result, the specific biogas yield reached 251.9 ml per gram of dry matter that is equivalent to ~ 0.25 m3 of the resultant biogas from 1 kg of organic raw material dry matter. In order to search for the active fraction of amaranth phytomass, we used solvents of different polarity, i.e. dichloromethane, 70 % aqueous ethanol and distilled water. It was found that the lag phase reduced to 10 days with the CH2Cl2 and EtOH extracts, which was comparable to that in the presence of dry amaranth phytomass. Obviously, these extracts contain components which either undergo rapid destruction by microorganisms able to turn them into biogas, or contribute to bacterial growth. The dichloromethane extract added to the substrate led to the most efficient biogas production, which is consistent with the literature data. Our findings indicate the ecological and economic feasibility of using amaranth pulp for organic waste bioconversion.ΠœΠ΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠ΅ Π±Ρ€ΠΎΠΆΠ΅Π½ΠΈΠ΅, ΠΈΠ»ΠΈ Π±ΠΈΠΎΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Π΅Π· - ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ смСси, состоящСй ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ· 65 % Π‘H4, 30 % CO2, 1 % Н2S ΠΈ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… количСств N2, O2, H2 ΠΈ CO, осущСствляСтся Π² анаэробных условиях ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹ΠΌ ΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΌ консорциумом. Π•Π³ΠΎ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² способности ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² Π±ΠΈΠΎΠ³Π°Π· практичСски всС классы органичСских соСдинСний, Π±Ρ‹Ρ‚ΠΎΠ²Ρ‹Π΅, ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Π΅ ΠΎΡ‚Ρ…ΠΎΠ΄Ρ‹. Нами Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° влияния Π΄ΠΎΠ±Π°Π²ΠΎΠΊ Π½Π° основС Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° багряного ( Amaranthus cruentus L.) Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ процСсса получСния Π±ΠΈΠΎΠ³Π°Π·Π° ΠΈΠ· органичСских ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ оптимизация субстрата ΠΏΠΎ органичСскому вСщСству с использованиСм фитомассы ΠΈΠ»ΠΈ ΠΆΠΎΠΌΠ° Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ послС извлСчСния всСх практичСски Ρ†Π΅Π½Π½Ρ‹Ρ… вСщСств, позволяСт ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π±ΠΈΠΎΠ³Π°Π· ΠΈΠ· осадков сточных Π²ΠΎΠ΄, Ρ€Π΅ΡˆΠ°Ρ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ обСззараТивания ΠΈ ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΠ½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ получСния дСшСвого возобновляСмого источника Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. Амарант багряный - высокоуроТайная ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ высокоС содСрТаниС Π±Π΅Π»ΠΊΠ°. Π•Π³ΠΎ биомасса слуТит ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎ воспроизводимым Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΡΡ‹Ρ€ΡŒΠ΅ΠΌ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ†ΠΈΠΊΠ»Π° исслСдований ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… способов получСния Ρ€ΡƒΡ‚ΠΈΠ½Π°, Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°, ΠΏΠ΅ΠΊΡ‚ΠΈΠ½Π° Π½Π° основС A. cruentus Π½Π°ΠΌΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° схСма комплСксной ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΉ экстрактивноС ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… вСщСств ΠΈΠ· Π²Ρ‹ΡΡƒΡˆΠ΅Π½Π½ΠΎΠΉ фитомассы растСния Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ тСхнологичСском Ρ†ΠΈΠΊΠ»Π΅. Π–ΠΎΠΌ Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° послС извлСчСния всСх Ρ†Π΅Π½Π½Ρ‹Ρ… соСдинСний Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π² качСствС косубстрата для анаэробного сбраТивания органичСских ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ². ВлияниС Π΄ΠΎΠ±Π°Π²ΠΎΠΊ Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° Π½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠ³Π°Π·Π° ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… условиях, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π² качСствС субстрата ΠΊΡ€ΡƒΠΏΠ½ΠΎΡ‚ΠΎΠ½Π½Π°ΠΆΠ½Ρ‹ΠΉ осадок сточных Π²ΠΎΠ΄ (ΠžΠ‘Π’) с городских очистных сооруТСний. ВыявлСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ эффСкта ΠΎΡ‚ количСства Π΄ΠΎΠ±Π°Π²ΠΊΠΈ (ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΠΊ фитомассы Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° 74 % ΠΈ 87 % подавлял ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Π΅Π·). Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ сбраТивания ΠžΠ‘Π’ послС Ρ„ΠΈΠ»ΡŒΡ‚Ρ€-прСсса (Π²Π»Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ 45 %) Π² ΠΌΠ΅Π·ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΌ (37 Β°Π‘) ΠΈ Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΌ (50 Β°Π‘) Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… с Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΆΠΎΠΌΠ° Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ прСимущСство Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° (ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²Ρ‹Ρ…ΠΎΠ΄ Π±ΠΈΠΎΠ³Π°Π·Π° составил 354 ΠΌΠ»/Π³ сухого вСщСства). ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² присутствии Π°ΠΌΠ°Ρ€Π°Π½Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΆΠΎΠΌΠ° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π±ΠΈΠΎΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Π΅Π·Π° Π² ΠΌΠ΅Π·ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ‚ΠΎΠΆΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π»Π°ΡΡŒ Π½Π° 87,0 %, ΠΏΡ€ΠΈ этом практичСски отсутствовала Π»Π°Π³-Ρ„Π°Π·Π°, содСрТаниС CH4 Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ всСго экспСримСнта составляло ΠΎΠΊΠΎΠ»ΠΎ 60 %, Π° ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²Ρ‹Ρ…ΠΎΠ΄ Π±ΠΈΠΎΠ³Π°Π·Π° достигал 251,9 ΠΌΠ»/Π³ сухого вСщСства, ΠΈΠ»ΠΈ ~ 0,25 ΠΌ3 Π±ΠΈΠΎΠ³Π°Π·Π° ΠΈΠ· 1 ΠΊΠ³ сухого вСщСства органичСского ΡΡ‹Ρ€ΡŒΡ. Π‘ Ρ†Π΅Π»ΡŒΡŽ поиска Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ фитомассы Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° ΠΏΡ€ΠΎΠ²Π΅Π»ΠΈ ΡΠ΅Ρ€ΠΈΡŽ экспСримСнтов с экстрактами Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° ΠΏΡ€ΠΈ использовании растворитСлСй Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ полярности - Π΄ΠΈΡ…Π»ΠΎΡ€ΠΌΠ΅Ρ‚Π°Π½Π°, 70 % Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ этанола ΠΈ дистиллированной Π²ΠΎΠ΄Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ Π² случаС экстрактов CH2Cl2 ΠΈ EtOH Π»Π°Π³-Ρ„Π°Π·Π° ΡΠΎΠΊΡ€Π°Ρ‰Π°Π»Π°ΡΡŒ Π΄ΠΎ 10 сут, Ρ‡Ρ‚ΠΎ сопоставимо с дСйствиСм фитомассы Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π°. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Π² этих экстрактах содСрТатся ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π»ΠΈΠ±ΠΎ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ быстрой дСструкции ΠΏΠΎΠ΄ влияниСм сообщСства ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π°ΡΡΡŒ Π² Π±ΠΈΠΎΠ³Π°Π·, Π»ΠΈΠ±ΠΎ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ росту Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ. ΠŸΡ€ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ Π΄ΠΈΡ…Π»ΠΎΡ€ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠ³ΠΎ экстракта ΠΊ субстрату происходило Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивноС Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠ³Π°Π·Π°, Ρ‡Ρ‚ΠΎ согласуСтся с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ†Π΅Π»Π΅ΡΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ использования ΠΆΠΎΠΌΠ° Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° ΠΏΡ€ΠΈ ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ органичСских ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ²

    Effect of White Phosphorus on the Survival, Cellular Morphology, and Proteome of Aspergillus niger

    No full text
    Β© 2020, Pleiades Publishing, Inc. Abstract: In the present study, the mechanisms of Aspergillus niger AM1 and AM2 resistance to white phosphorus were studied. It was shown that the presence of white phosphorus (P4) at a concentration of 0.25% in the medium had a marginal impact on the ratio of living to dead cells during fungal cultivation, which indicates a high resistance of the strains to P4. Observations made with electron microscopy showed an increase in the thickness of the fungal cell wall, which is a barrier to the penetration of white phosphorus. MALDI results revealed the biosynthesis of new protein enzymes that could potentially participate in the neutralization of white phosphorus. In addition, white phosphorus caused activation of the metabolism, accompanied by an increase in the number of mitochondria in the cells
    corecore