216 research outputs found

    Lyl1 interacts with CREB1 and alters expression of CREB1 target genes

    Get PDF
    AbstractThe basic helix-loop-helix (bHLH) transcription factor family contains key regulators of cellular proliferation and differentiation as well as the suspected oncoproteins Tal1 and Lyl1. Tal1 and Lyl1 are aberrantly over-expressed in leukemia as a result of chromosomal translocations, or other genetic or epigenetic events. Protein-protein and protein-DNA interactions described so far are mediated by their highly homologous bHLH domains, while little is known about the function of other protein domains. Hetero-dimers of Tal1 and Lyl1 with E2A or HEB, decrease the rate of E2A or HEB homo-dimer formation and are poor activators of transcription. In vitro, these hetero-dimers also recognize different binding sites from homo-dimer complexes, which may also lead to inappropriate activation or repression of promoters in vivo. Both mechanisms are thought to contribute to the oncogenic potential of Tal1 and Lyl1. Despite their bHLH structural similarity, accumulating evidence suggests that Tal1 and Lyl1 target different genes. This raises the possibility that domains flanking the bHLH region, which are distinct in the two proteins, may participate in target recognition. Here we report that CREB1, a widely-expressed transcription factor and a suspected oncogene in acute myelogenous leukemia (AML) was identified as a binding partner for Lyl1 but not for Tal1. The interaction between Lyl1 and CREB1 involves the N terminal domain of Lyl1 and the Q2 and KID domains of CREB1. The histone acetyl-transferases p300 and CBP are recruited to these complexes in the absence of CREB1 Ser 133 phosphorylation. In the Id1 promoter, Lyl1 complexes direct transcriptional activation. We also found that in addition to Id1, over-expressed Lyl1 can activate other CREB1 target promoters such as Id3, cyclin D3, Brca1, Btg2 and Egr1. Moreover, approximately 50% of all gene promoters identified by ChIP-chip experiments were jointly occupied by CREB1 and Lyl1, further strengthening the association of Lyl1 with Cre binding sites. Given the newly recognized importance of CREB1 in AML, the ability of Lyl1 to modulate promoter responses to CREB1 suggests that it plays a role in the malignant phenotype by occupying different promoters than Tal1

    Very long chain fatty acid metabolism is required in acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) cells have an atypical metabolic phenotype characterized by increased mitochondrial mass, as well as a greater reliance on oxidative phosphorylation and fatty acid oxidation (FAO) for survival. To exploit this altered metabolism, we assessed publicly available databases to identify FAO enzyme overexpression. Very long chain acyl-CoA dehydrogenase (VLCAD; ACADVL) was found to be overexpressed and critical to leukemia cell mitochondrial metabolism. Genetic attenuation or pharmacological inhibition of VLCAD hindered mitochondrial respiration and FAO contribution to the tricarboxylic acid cycle, resulting in decreased viability, proliferation, clonogenic growth, and AML cell engraftment. Suppression of FAO at VLCAD triggered an increase in pyruvate dehydrogenase activity that was insufficient to increase glycolysis but resulted in adenosine triphosphate depletion and AML cell death, with no effect on normal hematopoietic cells. Together, these results demonstrate the importance of VLCAD in AML cell biology and highlight a novel metabolic vulnerability for this devastating disease

    A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia.

    Get PDF
    Acute myeloid leukemia (AML) cells meet the higher energy, metabolic, and signaling demands of the cell by increasing mitochondrial biogenesis and mitochondrial protein translation. Blocking mitochondrial protein synthesis through genetic and chemical approaches kills human AML cells at all stages of development in vitro and in vivo. Tigecycline is an antimicrobial that we found inhibits mitochondrial protein synthesis in AML cells. Therefore, we conducted a phase 1 dose-escalation study of tigecycline administered intravenously daily 5 of 7 days for 2 weeks to patients with AML. A total of 27 adult patients with relapsed and refractory AML were enrolled in this study with 42 cycles being administered over seven dose levels (50-350 mg/day). Two patients experienced DLTs related to tigecycline at the 350 mg/day level resulting in a maximal tolerated dose of tigecycline of 300 mg as a once daily infusion. Pharmacokinetic experiments showed that tigecycline had a markedly shorter half-life in these patients than reported for noncancer patients. No significant pharmacodynamic changes or clinical responses were observed. Thus, we have defined the safety of once daily tigecycline in patients with refractory AML. Future studies should focus on schedules of the drug that permit more sustained target inhibition

    Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia.

    Get PDF
    In acute myeloid leukaemia (AML), the cell of origin, nature and biological consequences of initiating lesions, and order of subsequent mutations remain poorly understood, as AML is typically diagnosed without observation of a pre-leukaemic phase. Here, highly purified haematopoietic stem cells (HSCs), progenitor and mature cell fractions from the blood of AML patients were found to contain recurrent DNMT3A mutations (DNMT3A(mut)) at high allele frequency, but without coincident NPM1 mutations (NPM1c) present in AML blasts. DNMT3A(mut)-bearing HSCs showed a multilineage repopulation advantage over non-mutated HSCs in xenografts, establishing their identity as pre-leukaemic HSCs. Pre-leukaemic HSCs were found in remission samples, indicating that they survive chemotherapy. Therefore DNMT3A(mut) arises early in AML evolution, probably in HSCs, leading to a clonally expanded pool of pre-leukaemic HSCs from which AML evolves. Our findings provide a paradigm for the detection and treatment of pre-leukaemic clones before the acquisition of additional genetic lesions engenders greater therapeutic resistance

    The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability

    Get PDF
    Neurolysin (NLN) is a zinc metallopeptidase whose mitochondrial function is unclear. We found that NLN was overexpressed in almost half of patients with acute myeloid leukemia (AML), and inhibition of NLN was selectively cytotoxic to AML cells and stem cells while sparing normal hematopoietic cells. Mechanistically, NLN interacted with the mitochondrial respiratory chain. Genetic and chemical inhibition of NLN impaired oxidative metabolism and disrupted the formation of respiratory chain supercomplexes (RCS). Furthermore, NLN interacted with the known RCS regulator, LETM1, and inhibition of NLN disrupted LETM1 complex formation. RCS were increased in patients with AML and positively correlated with NLN expression. These findings demonstrate that inhibiting RCS formation selectively targets AML cells and stem cells and highlights the therapeutic potential of pharmacologically targeting NLN in AML

    Quality of Life and Socioeconomic Indicators Associated with Survival of Myeloid Leukemias in Canada

    Get PDF
    Understanding how patient‐reported quality of life (QoL) and socioeconomic status (SES) relate to survival of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) may improve prognostic information sharing. This study explores associations among QoL, SES, and survival through administration of the Euro‐QoL 5‐Dimension, 3‐level and Functional Assessment of Cancer Therapy‐Leukemia and financial impact questionnaires to 138 adult participants with newly diagnosed AML or MDS in a longitudinal, pan‐Canadian study. Cox regression and lasso variable selection models were used to explore associations among QoL, SES, and established predictors of survival. Secondary outcomes were changes in QoL, performance of the QoL instruments, and lost income. We found that higher QoL and SES were positively associated with survival. The Lasso model selected the visual analog scale of the EQ‐5D‐3L as the most important predictor among all other variables (P = .03; 92% selection). Patients with AML report improved QoL after treatment, despite higher mean out‐of‐pocket expenditures compared with MDS (up to 599CDN/monthforAMLvs599 CDN/month for AML vs 239 for MDS; P = .05), greater loss of productivity‐related income (reaching id="mce_marker"786/month for AML vs $709 for MDS; P < .05), and greater caregiver effects (65% vs 35% caregiver productivity losses for AML vs MDS; P < .05). Our results suggest that including patient‐reported QoL and socioeconomic indicators can improve the accuracy of survival models

    Ratio of stemness to interferon signalling as a biomarker and therapeutic target of myeloproliferative neoplasm progression to acute myeloid leukaemia

    Get PDF
    Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling

    Pseudo-mutant P53 is a unique phenotype of <i>DNMT3A</i>-mutated pre-leukemia

    Get PDF
    Pre-leukemic clones carrying DNMT3A mutations have a selective advantage and an inherent chemoresistance, however the basis for this phenotype has not been fully elucidated. Mutations affecting the gene TP53 occur in pre-leukemic hematopoietic stem/progenitor cells (preL-HSPC) and lead to chemoresistance. Many of these mutations cause a conformational change and some of them were shown to enhance self-renewal capacity of preL-HSPC. Intriguingly, a misfolded P53 was described in AML blasts that do not harbor mutations in TP53, emphasizing the dynamic equilibrium between wild-type (WT) and “pseudo-mutant” conformations of P53. By combining single cell analyses and P53 conformation-specific monoclonal antibodies we studied preL-HSPC from primary human DNMT3A-mutated AML samples. We found that while leukemic blasts express mainly the WT conformation, in preL-HSPC the pseudo-mutant conformation is the dominant. HSPC from non-leukemic samples expressed both conformations to a similar extent. In a mouse model we found a small subset of HSPC with a dominant pseudo-mutant P53. This subpopulation was significantly larger among DNMT3AR882H-mutated HSPC, suggesting that while a pre-leukemic mutation can predispose for P53 misfolding, additional factors are involved as well. Treatment with a short peptide that can shift the dynamic equilibrium favoring the WT conformation of P53, specifically eliminated preL-HSPC that had dysfunctional canonical P53 pathway activity as reflected by single cell RNA sequencing. Our observations shed light upon a possible targetable P53 dysfunction in human preL-HSPC carrying DNMT3A mutations. This opens new avenues for leukemia prevention
    corecore