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regulates lineage differentiation. Inhibition of DEGS1 in hematopoietic stem and
progenitor cells during the transition from quiescence to cellular activation with  N  -(4-
hydroxyphenyl) retinamide activates coordinated stress pathways that coalesce on
endoplasmic reticulum stress and autophagy programs to maintain immunophenotypic
and functional HSCs. Thus, our work identifies a linkage between sphingolipid
metabolism, proteostatic quality control systems and HSC self-renewal and provides
therapeutic targets for improving HSC-based cellular therapeutics.
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Summary 
 
Cellular stress responses serve as crucial decision points balancing persistence or culling of 
hematopoietic stem cells (HSCs) for lifelong blood production. While strong stressors cull HSCs, 
the linkage between stress programs and self-renewal properties that underlie human HSC 
maintenance remains unknown, particularly at quiescence exit when HSCs must also dynamically 
shift metabolic state. Here, we demonstrate distinct wiring of the sphingolipidome across the 
human hematopoietic hierarchy and find that genetic or pharmacologic modulation of the 
sphingolipid enzyme DEGS1 regulates lineage differentiation. Inhibition of DEGS1 in 
hematopoietic stem and progenitor cells during the transition from quiescence to cellular 
activation with N-(4-hydroxyphenyl) retinamide activates coordinated stress pathways that 
coalesce on endoplasmic reticulum stress and autophagy programs to maintain 
immunophenotypic and functional HSCs. Thus, our work identifies a linkage between 
sphingolipid metabolism, proteostatic quality control systems and HSC self-renewal and provides 
therapeutic targets for improving HSC-based cellular therapeutics.   
 
  



 

Introduction 
 
Humans have an enormous demand (~10e12 cells daily) for hematopoietic output. Meeting this 
need over a lifetime raises an inherent risk for malignancy due to DNA replication errors and 
potential metabolic and cellular stressors that cause cellular damage (Doulatov et al., 2012; Kohli 
and Passegue, 2014). Yet hematologic malignancies remain relatively rare. The hierarchical 
organization of blood is thought to mitigate the risk of transformation. All mature lineages 
descend from a pool of rare and largely quiescent long-term hematopoietic stem cells (LT-HSC) 
that in turn generate highly proliferative but more short-lived populations including short-term 
HSC (ST-HSC) and committed progenitors. Only LT-HSC are able to regenerate the entire blood 
system upon transplantation and maintain long-term output due to their unique capacity for self-
renewal. Whereas dormancy in LT-HSC minimizes the possibility of detrimental mutations 
passing to all progeny, damage arising within the rapidly proliferating downstream progenitors 
are ultimately purged upon terminal differentiation (Milyavsky et al., 2010; Mohrin et al., 2010). 
However, recent studies have found that dormancy is not the only feature that uniquely protects 
LT-HSC. Compared to downstream progenitors, stressed or damaged LT-HSC respond by 
activating pathways that result in culling rather than pathways that serve to repair or resolve the 
damage as is typical for progenitors and most mammalian cell types (Milyavsky et al., 2010; 
Mohrin et al., 2010). How this unique LT-HSC fate choice is made is poorly understood, 
particularly upon quiescence exit when LT-HSC must also dynamically shift metabolic state. The 
unfolded protein response (UPR) and macroautophagy, hereafter referred to as autophagy, have 
been identified as critical mediators for HSC stress responses (Ho et al., 2017; van Galen et al., 
2014; Warr et al., 2013). More broadly, these new findings revealed an unexplored layer of 
metabolic and organelle biology that influences LT-HSC regulation of self-renewal, quiescence, 
proliferation and lineage commitment that extends beyond the traditional focus on transcription 
factor networks governing fate decisions (Wilkinson and Göttgens, 2013). 
 
The energy and macromolecule requirements of HSC are distinct from progenitors and genetic 
ablation of key metabolic regulators in mouse models often lead to HSC exhaustion; as such, 
stringent control of cellular metabolism is fundamental for HSC function (Gan et al., 2010; 
Gurumurthy et al., 2010; Ito and Suda, 2014; Nakada et al., 2010; Simsek et al., 2010; Takubo et 
al., 2013; Wang et al., 2014). Recent data suggest that HSC contain integrated cellular networks 
coordinating proteostasis with dynamic biosynthetic and metabolic states to govern stem cell 
fate decisions especially in the transition from dormancy to cellular activation (Gurumurthy et 
al., 2010; Mohrin et al., 2015; Warr et al., 2013). Presumably, quality control mechanisms ensure 
HSC organelle and proteostatic health upon damage incurred from cell cycle entry and other 
basal metabolic stressors such as reactive oxygen species (ROS) (Garcia-Prat et al., 2017). 
However, metabolic as well as translation initiation heterogeneity cannot be attributed entirely 
to cellular identity differences between LT-HSC and committed progenitors; dormant HSC exhibit 
lower biosynthetic activity and protein synthesis than active HSC, suggesting HSC metabolic 
requirements are highly adaptive to cellular state (Cabezas-Wallscheid et al., 2017; Signer et al., 
2014). Additionally, the dysregulation of quality control mechanisms (e.g. autophagy) that occur 
upon HSC aging results in metabolic changes, suggesting that HSC fate is intimately entangled 
with metabolic and proteostatic regulation (Ho et al., 2017; Kohli and Passegue, 2014). Enhanced 



 

endoplasmic reticulum (ER) function in human HSC with enforced expression of the chaperone 
ERDJ4/DNAJB9 confers protection against the ER stress that is induced upon xenotransplantation 
thereby preserving self-renewing HSC (van Galen et al., 2014). Moreover, we recently showed 
higher levels of activating transcription factor 4 (ATF4) and components of the pro-survival 
integrated stress response (ISR) in human HSC are cytoprotective during homeostasis despite 
their lowered threshold for culling with strong stress stimuli (van Galen et al., 2018). Thus, a 
complex picture emerges suggesting the nature of the stress stimulus is important to fine-tune 
quality control responses for HSC persistence or culling. However, these studies raise a number 
of key questions: is there a single stimulus that activates both autophagy and the UPR to confer 
cytoprotective functions to HSC; is there a coordinated cellular stress response upon stress 
induction; and how do proteostasis programs impact HSC self-renewal?  
 
Proper management of lipid composition is integral for maintaining cellular membrane dynamics 
for cell division and signaling in cell lines (Atilla-Gokcumen et al., 2014; Koberlin et al., 2015).  
Although lipid homeostasis is critical for cellular and organismal health, the exploration of lipid 
metabolism in HSC function is limited (Hotamisligil, 2017; Ito et al., 2012; Ito et al., 2016). While 
lipostatic stress as well as proteostatic stress is known to converge on the activation of the UPR 
for pro-survival in human cells, and autophagy is a crucial element for maintaining lipid 
homeostasis in mice (Singh et al., 2009; Thibault et al., 2012), there is a critical lack of 
understanding on the impact of altering lipid composition to HSC function beyond the connection 
of fatty acid metabolism and mitochondrial function (Ito et al., 2016). Ceramide (Cer), the central 
component of sphingolipids (SpLs), has been proposed to be part of a lipid biostat that regulates 
cellular stress and activates stress responses (Hannun, 1996; Hannun and Obeid, 2018). DEGS1 
(Delta 4-Desaturase, Sphingolipid 1, or DES1) is an ER membrane spanning protein and the final 
enzyme in de novo SpL synthesis, which converts dihydroceramide (dhCer) to Cer; both genetic 
ablation and inhibition with the synthetic retinoid fenretinide/N-(4-hydroxyphenyl) retinamide 
(4HPR) is sufficient to activate autophagy in mouse cells or human cell lines (Siddique et al., 2015; 
Siddique et al., 2013). The potent bioactive lipid sphingosine-1-phosphate (S1P) is generated 
from metabolism of Cer and exerts pleiotrophic signaling roles in proliferation, survival, migration 
of immune cells and HSC, as well as regulation of lymphocyte lineage commitment and 
hematopoietic stem and progenitor (HSPC) function (Blaho et al., 2015; Golan et al., 2012; Juarez 
et al., 2012; Massberg et al., 2007; Schwab et al., 2005). Although S1P signaling regulates mouse 
hematopoiesis, whether other SpLs are important to HSC function is unknown.  
 
Here, we uncovered a transcriptional signature of genes governing SpL synthesis that 
distinguishes human HSC and committed progenitors. This distinct SpL wiring in the human 
hematopoietic hierarchy was confirmed with sphingolipidomic analysis of sorted mature and 
HSPC populations. When human HSC are placed in ex vivo conditions thought to promote cord 
blood (CB) HSC activation and expansion, they actually lose HSC function due to impaired 
proteostatic programs. By contrast, inhibition of DEGS1 in human HSC with 4HPR treatment 
before quiescence exit in ex vivo culture induced a coordinated response of proteostatic cellular 
stress programs including autophagy to maintain HSC self-renewal. Despite ex vivo culture, HSC 
following SpL modulation functionally show higher self-renewal relative to cultured cells without 
treatment pointing to a linkage between SpLs, proteostatic quality control programs, and HSC 



 

self-renewal in the transition from quiescence to cellular activation. 
 
Results 
 
DEGS1 influences SpL composition in the human hematopoietic hierarchy and is functionally 
required for HSC repopulation  
 
We undertook transcriptome analysis of highly resolved subpopulations of the human 
hematopoietic hierarchy and found that lipid signaling and metabolism genes involved in SpLs 
are differentially expressed (FDR<0.05, FC>1.5) in LT-HSC and ST-HSC (as defined in (Laurenti et 
al., 2015; Notta et al., 2011; Notta et al., 2016)) compared to committed progenitors (Figure 1A 
and S1A). Previous lipid measurements of mammalian cells indicated that SpLs contribute only 
~10% of the cellular lipidome, mostly represented by structural sphingomyelins (SM) and 
glycosphingolipids (van Meer and de Kroon, 2011). Overlaying the differentially expressed SpL 
genes (Figure 1A) onto the metabolic pathway (Hannun and Obeid, 2018) showed many of the 
SpL genes highly expressed in HSC centred around those involved in the synthesis of the low 
abundant bioactive dhCer and Cer species  (Figure S1A). To assess whether there is distinct SpL 
biosynthesis across the cell types comprising the human hematopoietic hierarchy, especially at 
the level of these less abundant SpLs, we isolated CD34+CD38- stem-enriched (stem) and 
CD34+CD38+ progenitor-enriched (progenitor) cells and 5 mature blood lineages (B and T 
lymphocytes, monocytes, neutrophils and erythrocytes) from CB by flow cytometry. These 
populations were subjected to Cer, dhCer, sphingosine, S1P, dhSph, dhS1P, hexosylceramides 
(HexCer, Cer containing glucose or galactose) and SM measurement using liquid chromatography 
mass spectrometry (LC-MS) (Figure 1B, S1B-H). SM were the most abundant SpLs in our analysis 
(Figure 1B, S1H, 72%-94%), consistent with previous lipidome profiling in mammalian cells (van 
Meer and de Kroon, 2011). Importantly, our profiling identified the accumulation of S1P 
specifically in erythrocytes (Figure S1E) confirming this lineage-specific association and the 
robustness of our sphingolipidome profiling (Dahm et al., 2006). We found no significant 
differences in SpL content between stem and progenitor cells except in the amount of dhCer 
carrying the C16:0 fatty acid providing evidence for differential wiring of de novo SpL synthesis 
at the lipid level in HSPC (Figure 1C). By contrast, the mature lineages showed significant 
differences from stem and/or progenitor cells (Figure S1C-H). Importantly, we saw that B cells, 
neutrophils and erythrocytes were significantly different in their ratio of Cer/dhCer from stem 
cells (Figure 1D). In contrast, T cells and monocytes did not differ in the Cer/dhCer ratio raising 
the question of whether Cer homeostasis regulates HPSC fate and lineage commitment decisions. 
DEGS1 expression levels are significantly increased in LT-HSC, ST-HSC and granulocyte-monocyte 
progenitors (GMP) following 6 hours of cytokine stimulation, suggesting increasing de novo SpL 
generated Cer pools may be an early event in the transition from quiescence to cellular activation 
(Figure 1E). To determine whether alterations in the Cer/dhCer ratio were functionally relevant 
in HSPC, we modulated their ratio through DEGS1 perturbation and asked if DEGS1 was required 
for in vivo repopulation. A lentiviral knockdown (KD) construct to DEGS1 was generated that 
decreased DEGS1 gene expression to 37% of shCtrl in a cell line model (Figure S1I). CB stem cells 
were transduced in vitro with either shCtrl or shDEGS1 vectors co-expressing BFP and 
transplanted into mice. At 4 weeks, we found DEGS1 KD significantly decreased human CD45+ 



 

BFP+ chimerism by 2-fold relative to BFP+ input and resulted in lineage skewing with an increase 
in myeloid cells at the expense of B lymphoid cells (Figure 1F, G, S1J-O). In summary, we have 
uncovered considerable diversity in SpL composition across the human hematopoietic hierarchy 
and found that human HSPC require DEGS1 in vivo.  
 
Sphingolipid modulation with the DEGS1 inhibitor 4HPR alters HSC function and lineage 
balance in vitro 
 
To determine whether DEGS1 is required as part of the proper transition from quiescence to 
cellular activation and/or self-renewal maintenance in human HSC, its function must be inhibited 
at the start of quiescence exit. As lentiviral transduction of CD34+ cells requires some period of 
cytokine pre-stimulation to induce cellular activation (Amirache et al., 2014), we used the 
irreversible DEGS1 inhibitor 4HPR at 2 μM (Rahmaniyan et al., 2011; Siddique et al., 2015) at the 
start of cytokine activation. This dose caused 50% maximal reduction in total cells of lineage-
depleted CB (lin-CB) cells after 3 days in culture (Figure S2A). 4HPR treatment for 8 days altered 
SpL composition resulting in decreased Cer and increased dhCer compared to controls (Figure 
2A, S2B, and S4A-D). BrdU incorporation in LT-HSC, ST-HSC, and GMP was decreased by 4HPR 
treatment at day 3 suggesting modulating Spls in HSPC decreases proliferation in vitro (Figure 
S2C). Nonetheless, 4HPR treatment still permits quiescence exit and does not significantly alter 
cell viability (Figure S2D-E). Similarly, there was no difference in cell cycle distribution between 
shCtrl and shDEGS1 in LT-HSC or in GMP isolated from mice at 4 weeks transplantation suggesting 
DEGS1 KD does not lock cells into quiescence in vivo (Figure S2F). Next, we utilized the colony 
forming cell assay (CFC) to assess in vitro progenitor function to determine if DEGS1 inhibition 
alters functional output from HSPC subpopulations. 4HPR treatment significantly increased 
clonogenic output specifically from LT-HSC (50% over control), but not from ST-HSC or GMP 
(Figure 2B). Treatment of LT-HSC and ST-HSC with 4HPR led to an increased proportion of 
granulocyte-macrophage (GM) and M colonies (Figure 2C). Flow cytometry confirmed the 
morphologic CFC assessment that 4HPR enhanced myeloid output at the expense of erythroid 
(Figure 2D-E). As 4HPR resembles all-trans retinoic acid (ATRA) and may have additional effects 
independent of DEGS1, CFC assays were performed on LT-HSC, ST-HSC, and GMP treated with 
ATRA but did not mimic 4HPR treatment (Figure S2G). Whilst 4HPR effects appeared independent 
of the retinoid pathway, other potential off-target effects on HSC function were possible. Thus, 
we turned to a genetic approach with DEGS1 KD and transduced LT-HSC, ST-HSC and GMP with 
shCtrl or shDEGS1 vectors and sorted BFP+ transduced cells for CFC assays. We found that 
shDEGS1 LT-HSC showed similar, but more modest changes in colony distribution and loss of 
erythroid output (Figure 2F-G). The more modest effects of DEGS1 KD may be reflective of the 
more modest, but measurable changes in Cer and dhCer levels compared to control KD in cells 
isolated from xenografts (Figure 2H-I, S2H). Thus, DEGS1 modulation pharmacologically or via KD 
alters lineage balance in vitro and 4HPR modulation of SpL homeostasis selectively enhances 
clonogenic efficiency only in LT-HSC.  
 
Ex vivo treatment with 4HPR maintains HSC function following xenotransplantation 
 



 

To directly test whether 4HPR modulation of SpL impacts LT-HSC function, we utilized the 
xenograft assay to selectively read out self-renewal capacity from culture-generated progeny 
with HSC function. Our approach to test 4HPR was guided by ex vivo expansion methods (Kiernan 
et al., 2016) that are used clinically to expand CB derived HSPC, as single CB units do not contain 
enough HSC to enable HSC transplantation (HSCT) into adult recipients in the clinic. Thus, we 
added 4HPR into an expansion scheme with lin- CB cells containing LT-HSC, ST-HSC and 
committed progenitors that was similar to recently developed state of the art methods for CB 
transplantation (Fares, et al., 2014). Three initial cell concentrations corresponding to high (16), 
medium (3.2), and limiting (0.65) long-term repopulating cells (LTRC) doses were cultured ex vivo 
for 8 days mimicking fed-batch conditions (Csaszar et al., 2012), and then their progeny were 
analyzed by flow cytometry and assessed for engraftment potential by xenotransplantation 
(Figure 3A, see methods). 4HPR-treated cultures had fewer CD34+ cells, enhanced myeloid 
differentiation and decreased erythroid differentiation (Figure 3B-F). Despite fewer CD34+ cells 
at transplantation, human CD45 chimerism for control and 4HPR treated progeny were similar in 
all cell doses following xenotransplantation (Figure 3G). Similarly, lineage distribution for B 
lymphoid, myeloid, and erythroid lineages (Figure 3H-J) and the percentage of lin- CD34+ cells 
(Figure 3K) from the 16 LTRC dose was comparable for control and 4HPR treated groups. Flow 
cytometry analysis of the HSC hierarchy in individual mice confirmed all HSPC subpopulations 
analyzed exhibited similar experimental variation between mice transplanted with control and 
4HPR treated cells (Figure S3A-I). These data indicate that despite reduced CD34+ cell output, the 
quality and quantity of functionally defined repopulating HSC from 4HPR cultured cells at 16 
weeks xenotransplantion was similar to controls where far higher numbers of CD34+ cells were 
transplanted. Moreover, lineage differentiation effects resulting from ex vivo modulation of SpLs 
in HPSC by 4HPR are transient and reversible following xenotransplantation since the number of 
HSPC regenerated in the mice was equivalent to controls. In contrast, when DEGS1 is genetically 
modulated via KD, we observed a severe decrease (4.5-fold decrease over shCtrl, Figure S3J) in 
the number of CD34+ at 4 weeks in vivo. Hence, reducing DEGS1 activity transiently or persistently 
restrains the generation of CD34+ progeny.    
 
Sphingolipid modulation restricts expansion of committed progenitors during ex vivo culture 
to enhance HSC self-renewal  
 

To determine if 4HPR treatment caused a potential dissociation between phenotypic and 
functional HSPC during culture, we quantitatively assess the HSC self-renewal capacity of 4HPR 
treated CB progeny using serial transplantation approaches. In contrast to previous strategies 
which focused on the expansion of CD34+ cells to improve the clinical utility of CB as a HSCT 
source, SpL modulation by 4HPR here restrained proliferation and resulted in 3.3-fold fewer 
CD34+ cells relative to control treatment (Figure 3F). Therefore, we investigated in parallel the 
effects of two known CB CD34+ agonists UM171 and SR1 (Boitano et al., 2010; Fares et al., 2014) 
alone and in combination with 4HPR. First, we assessed the clonogenic activity of LT-HSC in CFC 
assays and found that 4HPR significantly increased clonogenic activity in combination with either 
UM171 or SR1 to levels similar to 4HPR alone (Figure 4A). In contrast, UM171 or SR1 alone did 
not increase clonogenic activity of LT-HSC. Next, we cultured 2 independent pools of lin-CB with 
DMSO control, 4HPR, UM171+SR1 (U+S) and UM171+SR1+4HPR (3-Factor) for 8 days and found 



 

4HPR treatment restricted the percentage and number of CD34+ cells, while 3-Factor treatment 
resulted in an enhanced percentage of CD34+ cells comparable to U+S treatment (Figure 4B). The 
total number of cells following 8 days culture was similar between 4HPR and 3-Factor treatment 
(Figure S4A). We performed LC-MS analysis and found the SpLs measured in 3-Factor progeny 
phenocopied 4HPR treatment and were similarly perturbed (Figure S4B-D). We further analyzed 
CD34+ cells at day 8 culture for cultured LT-HSC (cLT:CD90+CD45RA-), ST-HSC (cST:CD90-CD45RA) 
and cultured committed progenitors (cProg:CD90-CD45RA+) (Figure 4C). 4HPR alone significantly 
limited the percentage of cProg cells while increasing cST cells in the CD34 compartment and 
trended to increased cLT cells relative to control; 3-Factor treatment resulted in significant 
enrichment of both cLT and cST populations (Figure 4C-D). The functional identity of these 
subpopulations was confirmed in an independent experiment by xenotransplantation for 16 
weeks; as expected cProg cells were unable to give rise to human CD45 grafts (Figure S4E-G). 
Hence, these data show 4HPR acts dominantly over UM171 or SR1 to enhance LT-HSC clonogenic 
ability and 3-Factor treatment during ex vivo culture increases immunophenotypic HSC subsets.  
 
To determine if 4HPR alone or 3-Factor enhances in vivo HSC self-renewal following ex vivo 
treatment, lin- CB progeny cultured with control, 4HPR, U+S or 3-Factor for 8 days were serially 
transplanted into NSG mice (Figure 3G, S4H). In line with previous work on UM171 and SR1, U+S 
or 3-Factor ex vivo treatment significantly increased primary engraftment of CB cells (Figure S4H; 
Fares et al., 2014). Next, human CD45+ cells engrafted at 16 LTRC doses were serially transplanted 
in a limiting dilution assay (LDA) to enumerate functional LTRC from the primary recipients for 5 
independent pools of CB treated with 4HPR; the total period of engraftment was 32 weeks. 4HPR-
treated cells showed a significant 2.5-fold increase in LTRC frequency over control upon 
secondary transplantation (Figure 4E-F, p=0.039). In the 2 experiments where U+S were also 
assessed, 4HPR alone resulted in 2.1-fold increase in LTRC frequency, similar to the frequency 
obtained by combining the five experiments (Figure 4E-F; S4I-J). However, the LTRC frequency of 
U+S treated cells was similar to control. Importantly, 3-Factor-treated cells gave a 4.7-fold 
augmentation in LTRC frequency over cultured control cells (p=0.007). Collectively, these 
transplantation data showed that CB expansion with 4HPR alone and in combination with U+S 
successfully sustained a pool of functional HSC during ex vivo culture with enhanced in vivo HSC 
self-renewal capacity relative to controls.  
 
4HPR activates a coordinated cellular stress response including autophagy and the UPR/ISR 
during ex vivo culture  
 
To elucidate the biological pathways altered by 4HPR treatment in human HSPC that contributed 
to lineage differentiation effects and maintenance of HSC self-renewal during cytokine activation, 
we performed RNA-sequencing (RNA-Seq) on lin- CB cells at days 2 and 4 following treatment 
with control, 4HPR, U+S, and 3-Factor (n=3). GSEA Pathway analysis identified 473 significantly 
upregulated gene sets and 80 significantly downregulated gene sets (FDR<0.05) in 4HPR 
compared to controls at day 2 (Figure S5A, Table S1). Many of the upregulated pathways 
following 4HPR treatment centered around cell cycle progression which is consistent with the 
decreased S phase progression in HSPC subsets we observed following 4HPR treatment (Table 
S1; Figure S2C). Lipid metabolism pathways were significantly altered with an upregulation of 



 

Cer/SpL biosynthesis and a decrease in cholesterol/sterol biosynthetic pathways (Figure 5A); 
possibly a feedback response due to SpL homeostasis disruption by 4HPR (Koberlin et al., 2015; 
Singh et al., 2009). Interestingly, a strong cellular stress induction theme was highlighted in the 
pathway analysis (FDR<0.05, Figure S5A) following 4HPR treatment, including ER 
stress/UPR/ATF4, protein folding, ROS and autophagy. These pathways were grouped into 6 
modules and GSEA showed a significant enrichment of these pathways for 4HPR treatment 
relative to control (Figures 5A-B, shaded gray on S5A, gene lists in Table S2).  
 
We asked if some of these stress response programs following 4HPR-induced lipostatic stress are 
potentially intrinsic HSC maintenance mechanisms necessary for cellular activation. When we 
analyzed ER stress/UPR, protein folding, ROS and autophagy in uncultured LT-HSC compared to 
uncultured GMP by GSEA, only autophagy was not significantly enriched, suggesting some stress 
response programs are more activated in progenitors than HSC at homeostasis (Figure S5B). To 
distinguish cell cycle priming as opposed to lineage priming differences between LT-HSC and 
GMP, we compared ST-HSC to LT-HSC at homeostasis and we found a significant enrichment of 
protein folding (p=0.001) and near significant enrichment of ER stress/UPR (p=0.079) in LT-HSC 
suggesting these programs may be required for quiescence exit and/or self-renewal (Figure 5C). 
Additionally, we analyzed published single cell RNAseq data of HSC from bone marrow (Velten et 
al., 2017). Within CD34+CD38-CD45RA- cells, we identified two clusters, cell cycle-primed and 
non-primed, using a clustering algorithm developed to robustly find distinguishing gene 
expression features in stem cells (Tarashansky et al., 2018, see methods). We specifically 
examined LT-HSC, which were represented in both clusters, and found that cell cycle-primed LT-
HSC have higher CD38 surface expression, cell cycle programs, and CDK6 and DEGS1 expression 
than non-primed LT-HSC (Figure S5C-D, 5D-E). The latter had enrichment for a set of dormancy-
associated genes found in label-retaining dormant mouse LT-HSC (Figure S5E, Cabezas-
Wallsheild, et al., 2017). We found ER stress/UPR and protein folding enriched in cell cycle-
primed LT-HSC suggesting the activation of ER proteostasis programs as well as upregulation of 
DEGS1 gene expression is an early event in HSC activation.  
 
Next, we asked how the gene expression changes enacted by 4HPR treatment compared to 
combination treatment with U+S during culture and changed over time. Cells subjected to 3-
Factor treatment at day 2 showed negative enrichment for cholesterol/sterol biosynthesis 
pathways and at day 4 also showed enrichment of ER stress and UPR pathways as observed with 
4HPR alone (Table S1). Gene expression changes for the top 4 genes in the selected pathways are 
similar following 4HPR treatment and 3-Factor treatment, but 3-Factor treated samples show 
fewer significantly altered gene sets than with 4HPR treatment alone at both days 2 and 4 (Figure 
5F, Figure S5F-G). These data point to activation of autophagy and ROS gene sets as resulting 
exclusively from 4HPR treatment. While cytokine treatment induces cell cycle entry but no cell 
division in LT-HSC at day 2 (progenitors have divided), most LT-HSC have completed one cellular 
division only by day 4 (Figure S2D, (Laurenti et al., 2015). Nonetheless, gene expression changes 
in ER stress/UPR and metabolic gene sets persist from day 2 to day 4 (Table S1; Figure S5F-H) 
suggesting 4HPR treatment is provoking a sustained HSC maintenance response in ex vivo culture 
independently of cell cycle transit following quiescence exit.  
 



 

We had previously identified a cytoprotective ATF4-ISR program downstream of the UPR in 
response to metabolic stress in human HSC (van Galen et al., 2018). Since we retrieved 
enrichment in the ER stress/UPR functional model for an “ATF4 activated genes” gene set by 
4HPR treatment, we asked if HSC subsets following DEGS1 KD also showed evidence for activation 
of this UPR/ATF4 program. We quantified phosphorylated eukaryotic translation initiation factor 

2 (eIF2) in LT-HSC and ST-HSC from 4 week xenografts engrafted with shCtrl or shDEGS1 
transduced HSPC by confocal microscopy (Figure 5G-H, 3 CB from experiment 2 of Figure S1J-M). 

Upon UPR activation by ER stress, eIF2 is phosphorylated to attenuate eIF2B resulting in global 
translation inhibition except for the specific transcriptional programs, e.g. ATF4, licensed by the 
UPR (Hetz et al., 2013). As LT-HSC are activated with 60% are cycling at 4 weeks transplant, the 

presence of anti-pEIF2S1/phospho-eIF2 staining in shCtrl LT-HSC and ST-HSC reflects activation 
of an UPR/ISR program (Figure 5G-H, S2F, S5I; Laurenti et al., 2015; van Galen et al., 2018). 
Importantly, shDEGS1 LT-HSC have significantly increased pEIF2S1 staining over shCtrl suggesting 
LT-HSC are more sensitive to lipostatic stress than ST-HSC in vivo (Figure 5G-H, S5J-K). Thus, these 
data suggest SpL modulation via pharmacological inhibition ex vivo and via lentiviral KD in vivo 
are activating an UPR/ATF4 program during cellular activation to restore homeostasis. 
 
Metabolic dysregulation through increase in oxidative stress and mitochondrial dysfunction are 
known activation signals for ATF4-ISR programs (Kasai et al., 2019). Pathways related to redox 
homeostasis, mitochondria gene sets and Pink-Parkin mediate mitophagy suggest 4HPR 
treatment has activated the UPR/ATF4 to enact metabolic remodeling to restore homeostasis 
(Table S1). Therefore, we analyzed two metabolic parameters following 2 days of 4HPR treatment 
in the progeny of CB stem and progenitor cells (Figure 5I-J, S5L-M). Decreased ROS and 
mitochondrial membrane potential were observed following 4HPR treatment as compared to 
control in both populations. Such metabolic reprogramming by 4HPR persists to day 3 when the 
progeny of HSPC including LT-HSC treated with 4HPR have exited quiescence and are actively 
cycling (Figure S5L-M, S2D). In summary, as DEGS1 functions at the ER to convert dhCer to Cer, 
which is then further processed at the Golgi apparatus to form complex SpLs (Thibault et al., 
2012; Zheng et al., 2006), these data are consistent with 4HPR inhibition of DEGS1 as a lipostatic 
stress stimulus capable of activating coordinated transcriptional stress programs to remodel the 
cellular metabolism of cultured HSPC for stress recovery and ultimately preserve functional HSC.  
 
Sphingolipid modulation specifically activates autophagy in stem and not progenitor cells 
 
As activating autophagy can promote HSC function (Chen et al., 2009; Luo et al., 2014), we asked 
if 4HPR treatment leads to autophagy activation for HSC maintenance during ex vivo culture. 
Gene expression analysis showed SpL modulation by 4HPR upregulated autophagy gene sets in 
lin- CB. However, autophagy has not previously been characterized in human LT-HSC in 
quiescence or upon cellular activation. Thus, we examined basal autophagy in CB LT-HSC and 
GMP with the autophagosome marker LC3II by confocal microscopy and found similar LC3II 
intensity consistent with murine data (Figure 6A, S6A-B, (Ho et al., 2017)). To ascertain if in vivo 
cellular activation disrupts basal autophagy levels in human HSC, we compared LC3II staining in 
LT-HSC isolated from G-CSF mobilized peripheral blood (mPB) (Figure 6B, S6C) and found a 
significant decrease in LC3II intensity in mPB LT-HSC compared to CB LT-HSC. Next, we asked if 



 

4HPR treatment specifically activated autophagy in human CB stem cells and not progenitors, 
since only murine stem cells appear capable of activating autophagic flux in response to 
metabolic stress (Warr et al., 2013), with two independent assays: 1) LC3II staining with and 
without bafilomycin A1 (BAF), an agent that inhibits autophagosome turnover by blocking 
lysosome acidification (Figure 6C-F, S6D-E) and 2) flow cytometry with Cyto-ID (Figure 6G-H, SG-
I). LC3II staining showed both control and 4HPR-treated stem and progenitor cells at day 2 exhibit 
basal autophagy in culture (Figure 6D-E, S6D). However, only stem but not progenitor cells 
showed autophagy activation by an increase in LC3II foci area in the presence of 4HPR and BAF 
(Figure 6D-F). Similarly, Cyto-ID staining with control or 4HPR-treated cells (0.2 μM or 2 μM) 
showed that 4HPR significantly amplified autophagic flux only in stem but not in progenitor cells 
(Figure 6G). We confirmed cytokine withdrawal activates autophagy (as measured by Cyto-ID) in 
human stem but not progenitor cells like in mouse (Figure 6H, S6F-G), which is further enhanced 
by 4HPR (Figure 6SH). Collectively, these data indicate 4HPR activated autophagy exclusively in 
stem cells during ex vivo culture. 
 
Sphingolipid modulation by 4HPR activates a coordinated proteostatic pro-survival response  
 
To mechanistically determine if HSPC require both autophagy and the UPR/ISR for survival in 
response to SpL modulation with 4HPR in culture, we pharmacologically inhibited autophagy with 
BAF alone or in combination with ISRIB in lin- CB. ISRIB is a potent ISR inhibitor by maintaining 

activity of eIF2B and retaining protein translation despite EIF2 phosphorylation (Hetz et al., 
2013). At day 8, the percentage of total number of cells relative to control, CD34+ cells, CD14+ 
myeloid cells and GlyA+ erythroid cells were quantified by flow cytometry analysis and compared 
to vehicle (Figure 7A-D). ISRIB appeared to have no significant effect on CB lin- cells treated with 
or without 4HPR by the parameters we measured, but significantly decreased proliferation when 
autophagy was also inhibited. Although BAF treatment was equally potent in restraining 
proliferation and differentiation particularly to the erythroid lineage in both control and 4HPR 
treated CB cells, as previously shown in embryonic stem cells and K562 cells (Zyryanova et al., 
2018), the addition of ISRIB with BAF significantly limited the number of viable cells and erythroid 
cells with 4HPR treatment relative to BAF+ISRIB alone and trended to significance in cells treated 
with 4HPR+BAF relative to 4HPR+BAF+ISRIB (Figure 7A, D). However, BAF treatment in lin- CB 
cells was context dependent as addition of BAF at day 2, perhaps when culture-induced stress 
was lower, had minimal effect on cell growth except for erythroid differentiation (Figure 7E, S7B-
F, Laurenti et al., 2015). Finally, lin- CB cells were treated with same combination of drugs as in 
Figure 7A beginning at quiescence for 20 hours and then Cyto-ID was used to assess whether 
autophagic flux activation requires coordinate activation of the UPR/ISR (Figure 7F). As these cells 
are a mix of stem and progenitor cells, no difference between control and 4HPR-treated cells was 
observed. However, upon BAF addition to accumulate autolysosomes, a loss of flux 
demonstrated by an increase in Cyto-ID MFI was observed in 4HPR+BAF cells relative to 4HPR 
cells alone or control + BAF treated cells (Figure 7F). At this time point, BAF treatment successfully 
blocked lysosome acidification as measured by flow cytometry with LysoTracker (Figure S7G). 
Importantly, the accumulation of autolysosomes seen between cells treated with 4HPR+ISRIB 
and cells treated with 4HPR+ISRIB+BAF was abolished suggesting some aspect of the ISR may be 
required to activate autophagic flux with 4HPR treatment (Figure 7F). In summary, these data 



 

along with the serial transplantation assays supports a model (Figure 7G) where SpL modulation 
by 4HPR in ex vivo culture activates a coordinated stress response including autophagy and ER 
stress programs to restore cellular homeostasis and maintain stemness in 4HPR-treated cells 
during the transition from quiescence to cellular activation.  
  
Discussion 
 
Here, we provide direct evidence that sphingolipid composition regulates HSC self-renewal and 
lineage commitment. Although short-term culture normally results in marked CD34+ cell 
expansion at the expense of LT-HSC, our data showed that modulation of SpL metabolism during 
culture activates cellular stress proteostasis programs that collectively promote the proper 
metabolic transition from quiescence to cellular activation resulting in LT-HSC maintenance. Four 
findings emerge from our work: 1) the sphingolipidome has distinct composition within the 
various mature, progenitor and HSC subsets that comprise the human hematopoietic hierarchy; 
2) KD or pharmacological dysregulation of DEGS1 is sufficient to alter the lineage determination 
of HSPC; 3) dysregulation of Cer and dhCer homeostasis serves as a signal to activate cellular 
stress proteostasis programs including the UPR and autophagy in human HSPC; and 4) transient 
SpL modulation by 4HPR during ex vivo expansion culture results in the maintenance of 
functionally defined LT-HSC that possess serial repopulating ability following 
xenotransplantation. 
 
Membranes are increasingly being recognized as playing central roles in cellular homeostasis and 
Cer pools have a special role in cellular lipid metabolism (Contreras et al., 2010; Hannun and 
Obeid, 2018).  Here, we establish SpL homeostasis as another aspect of lipid metabolism beyond 
fatty acid oxidation (Ito et al., 2016) that is pivotal to physiological human hematopoiesis. Cer 
and the complex SpLs are essential components of multiple cellular membranes including the ER, 
golgi, mitochondria, lysosomes, autophagosomes and at the plasma membrane (Hannun and 
Obeid, 2018).  Cer is generated either via de novo synthesis or from the salvage pathway through 
catabolic membrane recycling. We found that LT-HSC and ST-HSC favor increased expression of 
de novo synthesis pathway genes compared to more activated progenitors. We undertook 
sphingolipidome mapping of the human hematopoietic hierarchy and found distinct composition 
of sphingolipid species between five mature blood lineages and HSPC, particularly around the 
interface of cer to dhCer homeostasis. By inhibiting the de novo SpL metabolic enzyme DEGS1 
that adds a double bond to dhCer to form Cer, we modulated these de novo Cer pools and found 
that cellular stress programs were initiated. Our findings point to SpL remodeling as an early 
event in cellular activation of quiescent HSPC.   
 
Studies from the obesity and aging fields have identified mild induction of ER stress/UPR and 
autophagy as improving healthspan and lifespan possibly through effects on proteostasis and 
organelle homeostasis within stem cell populations (Garcia-Prat et al., 2017; Hotamisligil, 2017). 
Recently, we reported that ATF4 activates the ISR upon amino acid deprivation to increase HSC 
survival (van Galen et al., 2018). Moreover, physiological aging of HSC appears to result in part 
through suppression of autophagy programs that maintain metabolic homeostasis (Ho et al., 
2017; Mohrin et al., 2015). Whilst a number of ATF4 target genes are known to be involved in 



 

autophagy regulation, the linkage between the UPR, autophagy and ATF4/ISR remains unclear 
(B'Chir et al., 2013; Lai and Wong, 2008). Our present study points to SpL modulation by 4HPR as 
a single stimulus that concurrently activates each of these three arms to restore cellular 
homeostasis following metabolic perturbations such as those occurring during culture. Together, 
these function as a set of coordinated quality control responses, potentially via a cytoprotective 
mechanism that promotes the persistence of a more regenerative HSC pool following ex vivo 
cytokine activation from quiescence. We speculate that alterations of Cer/DhCer is part of a “lipid 
biostat” for stress that is in part enacted by the very distinct biophysical properties of Cer and 
dhCer. As alluded to in yeast and mouse cells (Thibault et al., 2012), altering lipid homeostasis 
may have major consequences on membrane structure, and this alteration has been proposed 
to activate the UPR (Contreras et al., 2010; Halbleib et al., 2017). DEGS1 KD was sufficient to 
activate the ISR arm of the UPR in HSC subpopulations in vivo (Figure 5G-H). Perhaps UPR sensing 
of various proteostatic and lipostatic stress is blunted during aging and together with erosion of 
autophagy flux in aged HSC responsible for some aging phenotypes. Would SpL modulation be 
proficient to activate these cellular stress protection programs and rejuvenate HSC during aging 
as suggested for rapamycin (Chen et al., 2009; Luo et al., 2014)?  
 
Our data indicate a need to evaluate potential adverse effects of obesity, which is linked to an 
increase in Cer levels (Turpin et al., 2014), on SpL homeostasis in human hematopoiesis. Obesity 
is also linked to disruption of the murine bone marrow hematopoietic niche and altering HSC 
function which persists in cells transplanted from obese mice into a normal environment 
(Naveiras et al., 2009; Zhou et al., 2017; Lee et al., 2018). We wonder whether obesity reprograms 
HSC stress responses via SpL lipostatic stress? Moreover, SpL dysregulation is associated with 
incomplete autophagy in a number of human neuropathies resulting from germline mutations in 
SpL genes which manifest as lysosomal lipid storage disorders (Hannun and Obeid, 2018). 
Interestingly, SpL gene expression was higher in neural stem cells than activated progeny, and 
the lysosome, which serves as a major site for SpL degradation, was proposed to be critical for 
quality control of neural stem cells during aging (Leeman et al., 2018). Determining the 
coordination of SpL metabolism, autophagy regulation and lysosomal biogenesis may prove 
informative for understanding how adult stem cells maintain life-long self-renewal. These data 
predict that SpL metabolism regulates adult stem function in both blood and brain and 
perturbation of lipostatic stress sensing in the lysosome or other organelles may contribute to 
human disease and aging.  
 
The study of HSC stress responses has implications beyond understanding stemness control. The 
ability to control the cellular properties of human HSC has important clinical implications 
particularly for HSCT. While 50,000 HSCT procedures occur annually, two thirds of patients who 
need HSCT lack matched donor tissue (Kiernan et al., 2016; Lund et al., 2015). Limitations of CB 
as a source for HSCT include the delay in neutrophil recovery following transplantation and long-
term sustainability of the donor graft (Lund et al., 2015). We found that DEGS1 inhibition 
regulates the erythroid-myeloid axis in vitro, where there was no alteration of S1P levels, 
suggesting such lineage commitment changes resulted from dysregulation of SpL composition 
not S1P signaling. Although we focused on a cell autonomous aspect of this biosynthetic pathway, 
our results are also consistent with recent work in the field on the role of S1P signaling axes on 



 

lymphoid and erythroid/platelet lineage commitment (Blaho et al., 2015; Vu et al., 2017). We 
observed a decrease in S1P levels in shDEGS1 cells isolated from the xenograft where there was 
also disruption of B lymphoid engraftment. Intrinsic genetic perturbation of S1P signaling is 
sufficient to dysregulate lymphoid commitment and the HSPC hierarchy in mice (Blaho et al., 
2015). However, the erythroid to myeloid skewing observed with 4HPR treatment could also 
result from an ER stress-mediated emergency granulopoiesis-like program (Gombart et al., 2007); 
this lineage bias may aid in faster neutrophil recovery in patients following transplant of an 
expanded CB. Another major limitation in wider clinical CB HSCT is the small number of HSC 
present in a single unit and the inability of many cytokine cocktails to expand LT-HSC. Our studies 
highlight the metabolic and proteostatic stress perturbations that arise upon cytokine activation 
that collectively impair LT-HSC function at the expense of generation and expansion of 
downstream progeny. SpL modulation by 4HPR during ex vivo culture activates cytoprotective 
proteostasis programs that result in preservation of significantly higher numbers of functional 
LT-HSC in the immunophenotypic HSC pool. Notably, we show here that the search for small 
molecules to increase LT-HSC donor graft sustainability from CB can be achieved with molecules 
that do not necessarily expand CD34+ cells. Thus, ex vivo CB expansion regimens including 4HPR 
to activate a lipostatic stress program together with UM171 and SR1 may provide the best 
compromise between generating large numbers of ST-HSC and progenitors for rapid engraftment 
while still sparing functional LT-HSC to ensure long-term hematopoiesis.  
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Figure legends 
 
Figure 1: DEGS1 contributes to the distinct wiring of sphingolipid synthesis in the human 
hematopoietic hierarchy and is functionally required in vivo. (A) Heatmap of mRNA expression 
for 36 lipid genes that are significantly differentially expressed (FDR <0.05 and fold change >1.5) 
between LT-HSC and MEP/GMP/CMP/MLP in the dataset from (Laurenti et al., 2013). SpL genes 
are in bold. (B) SpL distribution in the indicated CB populations (n=3-5). See Figure S1 for direct 
comparisons of each SpL. (C) Normalized dhCer profiles for stem and progenitor cells with the 
indicated fatty-acyl chain (n=3). (D) Log2 ratio of Cer to dhCer %. Significance to stem cells in red, 
to progenitors in blue. (E) qRT-PCR of DEGS1 at 0 hours (h) and 6h in culture from CB 
subpopulations. (F) Human engraftment (hCD45+BFP+) at 4 weeks xenotransplantation for shCtrl 
or shDEGS1 marked by BFP (5 biological replicates, n=5 mice per replicate, see Figure S1J-M for 
transduction input, hCD45 chimerism, and BFP%). (G) Fold change of BFP marked transduced cells 
relative to input in human CD45+ cells. Unpaired T-test, p<0.05 (*), p<0.05 (*),01 (**), p<0.01 
(**), p<0.001(***). 
 
Figure 2: Sphingolipid modulation of DEGS1 alters HSC function and lineage balance in vitro. 
(A) Total Cer and dhCer levels in lin- CB progeny cultured for 8 days with control or 4HPR (n=2). 

(B) LT-HSC, ST-HSC, or GMP CFC assays in the presence of ctrl or 2 M 4HPR showing (B) 
colonies/100 cells and (C) colony distribution (n=12, CB). Flow cytometry for (D) monocytic 
(CD14+) and (E) erythroid (GlyA+) markers in live cells from pooled CFC colonies (n=6, CB). (F) 
Colonly distribution in CFC assays with LT-HSC, ST-HSC, or GMP cells transduced with shCtrl or 
shDEGS1 (n=4, CB). (G) Flow cytometry for erythroid cells from pooled CFC colonies in Fig 2F. 
hCD45+BFP+ lacking the CD34+CD19- population were isolated from shCtrl or shDEGS1 mice at 4 
weeks post-transplant (n=2 CB) and profiled by LC/MS for (H) total Cer and dhCer levels and (I) 
normalized Cer and dhCer profiles with the indicated fatty-acyl chain. p<0.05 (*), p<0.01 (**), 
p<0.001(***). 
 
Figure 3: Ex vivo treatment with 4HPR maintains HSC function following xenotransplantation. 
(A) Experimental scheme for ex vivo culture of lin- CB followed by xenotransplantation with 
vehicle control or 4HPR. (B) Total cell counts at 8 days culture for the 16 LTRC dose of a 
representative experiment (n=3, CB cultured in triplicate). The number of (C) viable cells, (D) 
CD15+ myeloid cells, (E) GlyA+ erythroid cells, and (F) CD34+ cells injected/mouse were calculated 
for the 16 LTRC dose by flow cytometry analysis for control or 4HPR treatment prior to 
xenotransplantation (n=5 CB pools, 4 in technical triplicate, marked with different symbols). (G) 
Human CD45+ engraftment at 16 weeks post-transplant in injected femurs and non-injected 
bones (n=4 CB pools, 5 mice/drug treatment for each CB pool). Lineage analysis of mice engrafted 
with control or 4HPR-treated cells from figure 2G for (H) B lymphoid, (I) myeloid, (J) erythroid, 
and (K) CD34+ lacking CD33 or CD19 markers at the 16 LTRC dose. p<0.05 (*), p<0.01 (**), 



 

p<0.001(***). 
 
Figure 4: Sphingolipid modulation restricts expansion of committed progenitors during ex vivo 
culture to enhance HSC self-renewal. (A) Number of colonies for LT-HSC CFC assays with control 
(-) or the indicated combination of 4HPR, UM171 or SR1 at 10 days, unpaired t-test relative to 
control (ctrl, black) or to the presence or absence of 4HPR treatment. (B) Flow cytometry for the 
% and count (#) of CD34+ cells subsequently transplanted per mouse following 8 days culture. (C) 
Representative flow cytometry plots for CD90 and CD45RA within the CD34+ fraction of lin- CB 
progeny at day 8 with the indicated treatments. (D) Distribution of cultured CD34+CD90+CD45RA- 

(cLT), CD34+CD90-CD45RA- (cST), and CD34+CD90-CD45RA- (cProg) for the treatments at day 8 
following CD34 enrichment (n=4), unpaired t-test relative to control. (E-F) CD45+ cells were 
isolated from 16 LTRC dose mice and transplanted at limiting doses into secondary recipients for 
16 weeks and combined to calculate LTRC frequencies (5 biological experiments for control and 
4HPR; 2 biological experiments for U+S and 3-Factor). Human CD45+ marking of >0.1% was 
considered positive for secondary engraftment. P-value was by ELDA. p<0.05 (*), p<0.01 (**), 
p<0.001(***). 
 
Figure 5: Sphingolipid modulation with 4HPR treatment upregulates cellular stress pathways 
and remodels cellular metabolism in HSPC during ex vivo culture. (A) NES scores for selected 
pathways that are significantly enriched following 4HPR treatment at day 2. (B) Pathway analysis 
(GSEA) of SpL/cer, cholesterol biosynthesis ERstress/UPR, protein folding and ROS pathway 
modules for 4HPR compared to control. (C) GSEA analysis of autophagy, ER stress/UPR, protein 
folding or ROS pathways in uncultured LT-HSC vs ST-HSC. (D-E) LT-HSC from Velten, et al. were 
clustered as cell cycle-primed or non-primed as described in methods (D) the gene expression of 
CDK6 (top) and DEGS1 (bottom), and (E) Signature scores representing relative expression of 
pathways in 5C for single LT-HSCs, Wilcoxon rank sum test for 5D-E, p<0.05 (*), p<0.01 (**), 
p<0.001(***), p<0.0001 (****). (F) Heatmap showing gene expression at day 2 of the top 4 genes 
in gene sets in 5A organized as pathways. We included ATF4 related genes gene sets from the ER 
stress/UPR pathway. Median pEIF2S1 staining intensity quantified from microscopy images for 
BFP+ (G) LT-HSC and (H) ST-HSC isolated from 4 week xenografts engrafted with shCtrl or shDEGS1 
stem cells for 3 CBs (60 cells/CB, except shDEGS1 LT-HSC, 13-17 cells/CB). Flow cytometry analysis 
at day 2 post-treatment with indicated concentrations of 4HPR in the progeny of CD34+CD38- 

stem or CD34+CD38+ progenitor CB cells from 4 CBs for (I) ROS with CellROX and (J) mitochondrial 
membrane potential with TMRE. Paired t-test, p<0.05 (*), p<0.01 (**), p<0.001(***) in 5G-J. 
 
Figure 6: 4HPR activates autophagy in HSPC during ex vivo culture. LC3II staining intensity of (A) 
LT-HSC (174 cells) and GMP (312 cells) isolated from CB (n=3) or (B) mPB (165 cells, n=3 mPB) LT-
HSC compared to CB LT-HSC. (C) Representative microscopy images of DAPI (blue) and LC3II 
staining (green) for (C)CD34+CD38- (stem) cells following 2 days of treatment with DMSO control 

or 2uM 4HPR and  BAF. Scale is 5 m. LC3II foci area for (D) stem and (E) prog cells from one of 
three CB. The mean in control stem cells without BAF is shown with a dotted line. (F) Relative 
LC3II foci in the presence of BAF for stem and Prog populations. (G) Relative cyto-ID flux for 0 
(DMSO), 0.2 uM and 2 uM 4HPR in stem and prog populations at 2 days post-treatment (n=4). 
(H) Relative CytoID MFI measurements for stem-enriched samples to analyze autophagic flux 



 

with and without cytokine withdrawal with indicated drug treatments at day 2. p<0.05 (*), p<0.01 
(**), p<0.001(***). 
 
Figure 7: Sphingolipid modulation by 4HPR activates a coordinated proteostatic pro-survival 
response. Flow cytometry analysis at day 8 culture following autophagy inhibition with BAF 
and/or ISR inhibiton with ISRIB in lin- CB (n=3, in duplicate) beginning at Day 0 for control or 
4HPR treated cells for number of (A) live cells (B) CD34+ cells (C) CD14+ cells and (D) GlyA+ cells; 
represented as relative % to control, mean +/- SEM. (E) Total number of cells at day 8 after BAF 
was added either starting at day 0 or day 2. (F) Autophagic flux at 20 hours with indicated drugs 
was assayed with Cyto-ID MFI relative to control (2 CB, in triplicate). (G) Model for how 4HPR 
maintains stemness during ex vivo culture. p<0.05 (*), p<0.01 (**), p<0.001(***). 
 



 

STAR METHODS 
 

LEAD CONTACT AND MATERIALS AVAILABILITY  
 
Further information and requests for resources and unique/stable reagents generated in this 
study should be directed to and are available without restriction from the Lead Contact, John E. 
Dick (jdick@uhnresearch.ca).  
 
METHODS DETAILS 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS  
Human cord blood samples were obtained with informed consent from Trillium and Credit Valley 
Hospital according to procedures approved by the University Health Network (UHN) Research 
Ethics Board. Mononuclear cells were obtained by centrifugation on Lymphoprep medium (Stem 
Cell Technologies) and were depleted of Lin+ cells (lineage depletion) by negative selection with 
the StemSep Human Progenitor Cell Enrichment Kit according to the manufacturer's protocol 
(Stem Cell Technologies). Lin- CB cells were stored viably at -80°C or -150°C. Human mobilized 
peripheral blood samples (mPB) were obtained with informed consent from Princess Margaret 
Cancer Centre according to procedures approved by the UHN Research Ethics Board. Following 
mononuclear cell isolation, CD34+ cells from CB and mPB were enriched by positive selection 
with the CD34 Microbead kit (Miltenyi) and LS column purification with MACS magnet technology 
(Miltenyi). 
 
CELL SORTING 
Lin– cells were thawed by dropwise addition of X-VIVO + 50% fetal calf serum supplemented with 

DNase (100g/mL final concentration, Roche) and resuspended at a density of 5×106 cells/mL. 
Cells were then stained with the following antibodies (all from BD, unless stated otherwise): FITC–
anti-CD45RA (1:50, 555488), PE–anti-CD90 (1:50, 555596), PECy5–anti-CD49f (1:50, 551129), 
V450–anti-CD7 (1:33.3, 642916), PECy7–anti-CD38 (1:200, 335790), APC–anti-CD10 (1:50, 
340923), APCCy7–anti-CD34 (1:200, custom made by BD). Cells were sorted on FACS Aria III 
(Becton Dickinson), consistently yielding >95% purity. LT-HSC were sorted based on the following 
markers: CD34+CD38-CD45RA-CD90+CD49f+. ST-HSC were sorted as CD34+CD38-CD45RA-CD90-

CD49f- and GMP as CD34+CD38+CD10-CD7-CD45RA+. shCtrl or shDEGS1 previously frozen 4 week 
xenograft samples were thawed as described above. Mouse cells were depleted with the mouse 
depletion kit (Miltenyi) and LS column purification with MACS magnet technology (Miltenyi). Cells 
were then stained with the following primary antibodies: FITC–anti-CD45RA PE–anti-CD90, 
PECy5–anti-CD49f, BV711-CD19 (1:50, 563036), Alexafluor700–anti-CD7 (1:50, 561603), either 
APC–anti-CD10 or Alexafluor700–anti-CD10 (1:50, 563500) BV510-CD45 (1:50, 563891), biotin-
Flt3L (1:50, 624008), and APCCy7–anti-CD34. Cells were washed and then stained with 
streptavidin-Qdot605 (1:100, Q10101MP). LT-HSC were sorted based on the following markers: 
CD45+BFP+C19-CD34+CD38-CD45RA-CD90+CD49f+. ST-HSC were sorted as CD45+BFP+CD19-

CD34+CD38-CD45RA-CD90-CD49f- and GMP as CD45+BFP+CD19-CD34+CD38+CD10-CD7- CD45RA+. 
 
SPHINGOLIPID QUANTITATION BY MASS SPECTROMETRY 



 

To profile the SpL composition of primitive CB cells, 1.05-1.1 million CD34+CD38- and 1.9-2.9 
million CD34+CD38+ cells were isolated from 3 pools of previously frozen lin- CB (22 million – 50 
million cells) by flow cytometry, washed with PBS, and frozen as cell pellets. For the SpL 
distribution of mature CB lineages, freshly isolated CB bags from five individuals were processed 
for mononuclear cells and a small fraction stained with V450-anti-CD15, APC-cy7-anti-CD34, PE-
Cy7-anti-GlyA, PECy5–anti-CD14, FITC-anti-CD3, and V500-anti-CD45 to sort for erythrocytes 
(GlyA+CD45-) prior to ammonium chloride lysis. After lysis, cells were stained at 10 million/ml 
and T cells (CD45+CD3+CD19-CD14-CD15-), B Cells (CD45+CD3-CD19+CD14-CD15-), monocytes 
(CD45+CD3-CD19-CD14+CD15-), and neutrophils (CD45+CD3-CD19-CD14-CD15+) were isolated by 
flow cytometry on the Aria Fusion or Aria RITT. Cell numbers ranged from 1-4 million cells. 
Subsequent lipid extraction and mass spectrometry for sphingomyelin species, hexosylceramide 
species, ceramide species, dihydroceramide species and sphingoid species were performed by 
the Lipidomics Facility of Stony Brook University Medical Center (Bielawski et al., 2009). As the 
morphology between the subpopulations are quite distinct, particularly between the mature 
lineages, normalization of the sphingolipidome data was an important consideration. 
Normalization to cellular inorganic phosphate (Pi) was chosen to minimize the potential 
confounding effects of differences in cellular size and protein content between the profiled 
populations. Two pools CD34- lin- CB cultured with DMSO control or 4HPR for 8 days were 
collected and 4 million expanded cells were washed twice in PBS and frozen as cell pellets. 
CD45+BFP+ cells lacking the CD34+CD19- population were sorted from shCtrl (1.8-2.7 million cells) 
or shDEGS1 (0.4-0.5 million cells) previously frozen 4 week xenograft samples (Primary transplant 
data in Figure S1I-O, Experiment 1, n=2 biological replicates), washed and frozen as cell pellets. 
Subsequent lipid extraction and mass spectrometry for ceramide species, dihydroceramide 
species and sphingoid species were performed by the Lipidomics Facility of Stony Brook 
University Medical Center. Inorganic phosphate levels were measured for lipid normalization 
across samples. 
 
LENTIVIRAL SHRNA KNOCK-DOWN OF DEGS1 
shRNA sequences were predicted using the Sherwood algorithm (Knott et al., 2014) and 
ordered as Ultramer DNA oligos (IDT). Subsequently, shRNAs were amplified using AmpliTaq 
Gold 360 Polymerase (ThermoFisher, 4398813) using FW primer: 5’- 
GGATCCTGTTTGAATGAGGCTTCAGTACTTTACAGAATCGTTGCCTGCACATCTTGGAAACACTTGCTGG
GATTACTTCT-3’ and RV primer: 5'-
AGTAACGCGTAAAGTGATTTAATTTATACCATTTTAATTCAGCTTTGTAAAAATGTATCAAAGAGATAGC
AAGGTATTCAGTTTTAGTAAACAAGATAATTGCTCCTAAAGTAGCCCCTTGAAGTCCGAGGCAGTAGGC
A-3'. The PCR product was digested with BamH1-HF and Mlu1-HF (NEB) and subcloned into the 
pLBC2 lentiviral vector, downstream of SFFV-tBFP. Viral production, titration and transduction 
of CD34+CD38- CB cells were done as previously described (Kaufmann et al., 2019). 
 
shRNA sequences: 
DEGS1 shRNA (shDEGS1):  
5’-
TGCTGTTGACAGTGAGCGAGGTCATGAAACTTACTCATAATAGTGAAGCCACAGATGTATTATGAGTAA
GTTTCATGACCCTGCCTACTGCCTCGGA-3’ 



 

control Renilla shRNA (shCtrl): 
5’-
TGCTGTTGACAGTGAGCGCAGGAATTATAATGCTTATCTATAGTGAAGCCACAGATGTATAGATAAGCA
TTATAATTCCTATGCCTACTGCCTCGGA-3’ 
 
QUANTITATIVE RT-PCR FOR DEGS1 KNOCKDOWN 
In order to assess shRNA knock-down efficiency, MOLM13 cells were infected at a multiplicity 
of infection of 0.3. Transduced cells were sorted for BFP+ expression and total RNA was isolated 
and DNAse treated using the RNeasy Micro Kit (Qiagen, 74004). RNA quality (RIN > 9) was 
verified using the Bioanalyzer RNA 6000 Pico Kit (Agilent) and cDNA was synthesized using 
SuperScript VILO (ThermoFisher, 11754050). qPCR was performed on the Roche Lightcycler 480 
using Power SYBR Green (ThermoFisher, 4367659). All signals were quantified using the ΔCt 
method and were normalized to the levels of GAPDH. 
 
qPCR primers: 
DEGS1: 
5'-CAAACATTCCAAACCAGCGAT-3' 
5'-GCAGTTGCATTAACCACTCAA-3' 
GAPDH: 
5'-ACATCGCTCAGACACCATG-3' 
5'-TGTAGTTGAGGTCAATGAAGGG-3' 
 

XENOTRANSPLANTATION  
All animal experiments were done in accordance to institutional guidelines approved by the 
University Health Network Animal care committee. Aged match female or male NSG mice 
(NOD.Cg PrkdcscidIl2rgtm1Wjl /SzJ; Jackson Laboratory) 10-12 weeks of age were sublethally 
irradiated with 250 rads 1 day before intrafemoral injection. Following 4 weeks 
xenotransplantion of lentiviral DEGS1 knockdown into male NSG, mice were euthanized and the 
injected femur and other bones were flushed separately in Iscove's modified Dulbecco's medium 
(IMDM) and human chimerism and transduced cells marked by BFP expression were assessed by 
flow cytometry on the BD Celesta and the following antibodies: PE–anti-CD19 (349209), PE–anti-
GlyA (Beckman Coulter, A07792), V500–anti-CD45 (560777), APCCy7–anti-CD34, and BV786–
anti-CD33 (740974). For primary transplant analysis of ex vivo cultured cells, female mice were 
euthanized at 16 weeks after transplantation. The injected femur and other bones were flushed 
separately in Iscove's modified Dulbecco's medium (IMDM) and human chimerism was assessed 
with the following antibodies: PE–anti-CD19 (349209), PE–anti-GlyA (Beckman Coulter, A07792), 
PECy5–anti-CD45 (Beckman Coulter, A07785), PECy7–anti-CD14 (1:200; Beckman Coulter, 
A22331), APC–anti-CD33 (551378) and V450–anti-CD15 (642917). For secondary LDA assays, 
primary transplant mice from each treatment group were individually thawed, and 1/3 of each 
mouse pooled and stained with APC–anti-CD45 and FITC–anti-CD45. Human CD45+ cells were 
sorted from each pooled sample and injected at indicated doses into irradiated female NSG mice 
and engraftment assessed at 16 weeks post-transplant. For LDA experiments, injected femur and 
non-injected femurs were isolated and flushed separately and analyzed with the following: APC–
anti-CD45, FITC–anti-CD45, PE-anti-CD19 and APC–anti-CD33. A mouse was considered 

http://www.bdbiosciences.com/eu/applications/research/stem-cell-research/hematopoietic-stem-cell-markers/human/negative-markers/apc-mouse-anti-human-cd33-wm53-also-known-as-wm-53/p/551378


 

engrafted if CD45+>0.1 and multilineage. LTRC frequency was estimated using the ELDA software 
(http://bioinf.wehi.edu.au/software/elda/; (Hu and Smyth, 2009). The remaining 2/3 of bone 
marrow from each individual mouse was first enriched for CD34+ cells by positive selection with 
the CD34 Microbead kit (Miltenyi) and LS column purification with MACS magnet technology 
(Miltenyi). CD34+ enriched cells were then directly analyzed by flow cytometry with the following 
antibodies: FITC–anti-CD45RA, APC–anti-CD90, PECy5–anti-CD49f, V450–anti-CD7, PECy7–anti-
CD38, V421–anti-CD10, APCCy7–anti-CD34, PE-anti-CD19, V500-anti-CD45. 
 
METHYLCELLULOSE CFC ASSAY 
LT-HSC, ST-HSC, or GMP were sorted directly into methylcellulose (cat. No H4034, Stem Cell 
Technologies), supplemented with FLT3 Ligand (20 ng/ml) and IL6 (50 ng/ml). Fenretinide/4HPR 
(Tocris Biosciences, cat. # 1396), StemRegenin1 (Stem Cell Technologies, cat. # 72344), and 
UM171 (Xcessbio, cat. #60223-2), or DMSO vehicle were added following sorting at the following 

concentrations, DMSO (control), 2M 4HPR, 35nM UM171 or 500 nM SR1, such that DMSO was 
always <0.1% and equal between treatment and control groups. ATRA was a kind gift from G. 
Keller. Samples were mixed and plated onto 35 mm dishes in duplicates. Colonies were allowed 
to differentiate for 10-11 days and morphologically assessed for colonies in a blind fashion by a 
second investigator. At day 14, colonies from replicate plates were pooled and resuspended in 
PBS/FBS and stained with FITC–anti-CD45RA, APC–anti-CD90, PECy5–anti-CD14, APCCy7–anti-
CD34, PE-anti-CD235a (GlyA) for flow cytometry analysis on a BD Canto or Celesta. For shDEGS1 
experiments, sorted LT-HSC, ST-HSC, or GMP were cultured in low cytokine media for 4 hours 
and then transduced with shCtrl or shDEGS1 lentivirus. At day 3 post-transduction, BFP+ cells 
were sorted directly into methylcellulose as above for colony scoring 10 days later (day 13 post-
transduction). At day 16 post-transduction, colonies were analyzed on the Celesta for BFP and 
with APC–anti-CD90, PECy5–anti-CD14, APCCy7–anti-CD34, PE-anti-GlyA, and BV786–anti-CD33. 
 
EX VIVO CORD BLOOD CULTURE SCHEME  
Lin- CB were thawed via dropwise addition of X-Vivo based thawing media (X-Vivo, 50% FBS+1% 
DNAse), resuspended in cytokine media, viable cells counted, and placed into appropriate cell 
concentrations for liquid culture (Laurenti et al., 2015): StemPro (Stem Cell Technologies) 
supplemented with StemPro nutrients (Stem Cell Technologies), L-glutamine (GIBCO), Pen/Strep 
(GIBCO), human LDL (Stem Cell Technologies, 50 ng/mL) and the following cytokines (all from 
Miltenyi): SCF (100 ng/mL), Flt3L (20 ng/mL), TPO (100 ng/mL), IL-6 (50 ng/mL), IL-3 (10 ng/mL), 
GM-CSF (20 ng/mL), except EPO (3 units/mL, from Jansen). The experimental scheme for ex vivo 
culture of viable lin- CB cells post thawing is the following: 3 initial cell doses in a LDA fashion 
with 62,500 cells (high), 12,500 cells (medium), and 2,500 cells (limiting) are cultured per well in 
a 24 well plate with 0.5 mls expansion media plus vehicle control or drug(s) on day 0. We 
mimicked fed-batch growth conditions where drug was added with fresh media every second day 
for 8 days to reduce auto-inhibitory signalling and ensure nutrients and drugs are not limiting 
during the culture period (Csaszar et al., 2012): fresh media plus drugs are added on day 2 (0.5 
mls), day 4 (1 ml), and feeding and transferring to a 6 well plate on day 6 (2 mls). On day 8, all 
progeny are collected and 10/11th are unbiasly transplanted via intrafemoral injection into 5 NSG 
mice/condition. 1 LTRC cell is roughly equivalent to 700 lin- CB cells as previously calculated in 
xenotransplantation (Notta et al., 2011). This translates to the equivalent of the following day 0 

http://bioinf.wehi.edu.au/software/elda/


 

cell doses: ~11,300 lin- cells or ~16 initial LTRC/mouse (high), ~2270 lin- cells or~3.2 LTRC/mouse 
(medium) and 454 lin- cells or ~0.65 LTRC/mouse (limiting). The remaining 1/11th of day 8 
progeny are analyzed by flow cytometry on a BD canto with a plate reader to enumerate cell 
numbers and lineage distribution with the following: V450-anti-CD15, APC-cy7-anti-CD34, PE-
Cy7-anti-GlyA, PECy5–anti-CD14, or FITC-anti-CD15, PE-Cy5-anti-CD34, PE-anti-GlyA, PECy7–anti-

CD14. LT-HSC, ST-HSC and GMP were sorted and ~500 cells/well were cultured in 100 l of 

cytokine media with DMSO on a 96 well plate on day 0. On day 4, an additional 100 l of ex vivo 
media with compounds were added. Cells were stained with APCCy7–anti-CD34 on day 8 on a BD 
Canto with plate reader. For inhibition of autophagy and the ISR, 20nM Bafilomycin A1 (Sigma, 
B1793) and 500 nM ISRIB (Selleckchem, S7400), dissolved in DMSO, were added to 20,000 lin- CB 
cultured in cytokine media as indicated and analyzed for viable cells and lineage as previously 
and with CytoID (Enzo Life Sciences) or LysoTracker blue (ThermoFisher Scientific, L7525).  
  
PROLIFERATION AND CELL CYCLE ANALYSIS ASSAYS 
For assessment of proliferation using BrdU incorporation assays, indicated subpopulations were 

cultured for three days with DMSO vehicle or 2M 4HPR in expansion media when BrdU was 
added to cells for 4 to 8 hours. BrdU staining was performed with the APC BrdU Flow Kit (BD 
Pharmingen) with APC-anti-BrdU according to the manufacturer’s protocol. Sorted LT-HSC, ST-
HSC or GMP were cultured in ex vivo culture media with vehicle or 4HPR as indicated and fixed 
and stained for Ki67-Hoechst assays as described (Laurenti et al., 2015). LT-HSC and GMP were 
sorted from shCtrl or shDEGS1 previously frozen 4 week xenograft samples (Primary transplant 
data in Figure S1I-O, Experiment 1, n=2 CB) and fixed and stained for Ki67-Hoechst analysis. 
Samples were analyzed on a BD LSRII cytometer with an UV laser.  
 

IMMUNOFLUORESCENCE FOR LC3II AND PHOSPHORYLATED EIF2 
1x104 sorted CD34+CD38- or CD34+CD38+ cells were cultured in ex vivo culture media on a 96 

well suspension plate with DMSO or 2M 4HPR. Bafilomycin A1 was added at 30 hours post-
culture. Cells were collected at 48 hours post-culture and fixed with 4% paraformaldehyde. Cells 
were stain with a mouse monoclonal antibody to LC3II (NanoTools, 5F10) and DAPI. Slides were 
visualized on a Zeiss LS700 confocal microscope and images collected. Quantitation of LC3II foci 
area as a percentage of total cell area was done using R and Image J software (n=3 CB). A range 
of 50-150 cells were quantified per condition. LT-HSC and GMP were purified sorted from CD34+ 
CB or mPB samples, fixed with 4% paraformaldehyde and stained with LC3 and DAPI as above. 
Following image collection on a Zeiss LS700 confocal microscope, LC3II integrated density (total 
signal intensity) was quantified using R and Image J software (n=3). LT-HSC and ST-HSC were 
sorted from shCtrl or shDEGS1 previously frozen 4 week xenografts samples (n=3, Experiment 2, 
Figure S1I-O), fixed with 4% paraformaldehyde and stained with a rabbit monoclonal antibody to 
EIF2S1 (phospho S51, Abcam, ab196460) and DAPI and images collected as above. 
 
CYTOID, ROS, MITOCHONDRIA MEMBRANE POTENTIAL ANALYSIS 
1x104 sorted CD34+CD38- or CD34+CD38+ cells were cultured in ex vivo media on a 96 well 

suspension plate with DMSO, 0.2M or 2M 4HPR for either 2 days or 3 days. Autophagy flux 
was measured using CytoID analysis kit (Enzo Life Sciences). Cytokine withdrawal experiments to 



 

induce autophagy were done by replacing media containing only drugs without cytokines for 6 
hours on cells and then analyzing with CytoID. Staining for ROS and mitochondrial membrane 
potential in active mitochondria was performed by incubating cells at 37 °C with 5 μM CellROX 
deep red (C10422) and 1 μM TMRE (T668), following the manufacturer’s protocols 
(ThermoFisher) and directly analyzed on a BD celesta.  
 
RNA-SEQUENCING AND PATHWAY ANALYSIS  
Three pools of lin- CB at the 16 LTRC dose (62,500 cells/well, 24 well plate) were cultured with ex 

vivo culture media and the following 4 treatment conditions: DMSO (control), 2M 4HPR, 35nM 
UM171 + 500 nM SR1 (U+S) or combination of 4HPR+UM171+SR1 (3-Factor). Cultured cells at 
day 2 and day 4 were collected, pelleted, washed twice with PBS and resuspended in RNeasy 
microRNA plus kit (Qiagen) and frozen for subsequent RNA isolation. Sufficient cells were 
cultured to isolate a minimum of 500 ng RNA. Nextera libraries were generated without 
amplification and subjected to 125 bp, paired-end RNA-sequencing on the Illumina HiSeq 2500 
with an average of ~57 million reads/sample at the Center for Applied Genomics, Sick Kids 
Hospital. Reads were trimmed to remove the adapters and were then aligned to hg19 using 
TopHat (v2.1.1) and gene counts were generated using HTSeq (v 0.6.1). Read counts were 
retrieved for each sample and processed using edgeR to estimate differential expression 
between the treated and ctrl samples and between 3-Factor and U+S and 4HPR. Genes with count 
per million equal or less than 0.25 in at least one fifth of the samples were removed from further 
analysis. 15085 genes remained in the analysis. edgeR dispersion parameters were estimated for 
the whole dataset and a generalized model was applied to compare each treated-control pair. 
Cord blood batch was included in the model. Tests were corrected for multiple hypothesis testing 
using the Benjamini-Hochberg method. MDS plots, hierarchical clustering and heatmaps were 
generated using logarithm of base2 of count per million of TMM normalized counts. A score to 
rank genes from top up-regulated to down-regulated was calculated using the formula -
sign(logFC) * -log10(pvalue). The rank file from each comparison was used in pathway analysis 
(GSEA) (http://software.broadinstitute.org/gsea/index.jsp) using 2000 permutations and default 
parameters against a pathway database containing Msigdb c2 and c3, NCI, IOB, NetPath, 
HumanCyc, GO BP and Panther (http://baderlab.org/GeneSets, version April 2017). NES and FDR 
results are located in Table S1. EnrichmentMap version 2.1.0 in Cytoscape 3.4.0 was used to 
visualize enriched pathway gene sets at FDR <= 0.05 with a Jaccard coefficient set to 0.25. For 
GSEA analysis in Figure 5B and Velten, et al. scRNA-seq, lists of genes were returned by taking 
the union of all gene sets for the pathways in Figure 5A. 
 
SINGLE CELL RNA-SEQ ANALYSIS  
Index-sorted single cell (sc) RNA-seq data of human HSPCs (Velten et al., 2017) were obtained 
from GEO (GSE75478). Raw count data and FACS surface marker annotations were loaded into 
the Scanpy single cell analysis suite (Wolf et al., 2018). FACS surface marker measurements were 
subject to logicle transformation through the flowutils package 
(https://github.com/whitews/FlowUtils), and used to distinguish CD34+CD38- plates from 
CD34+CD38+ plates for each individual. Among the CD34+CD38- plates, CD34+CD38-CD45RA- 

HSPCs were identified and their gene expression counts were subjected to pooling normalization 
using the scran package in R (Lun et al., 2016). Normalized CD34+CD38-CD45RA-  HSPCs for each 

http://baderlab.org/GeneSets
https://github.com/whitews/FlowUtils


 

individual were subsequently clustered using the 'Self Assembling Manifolds' (SAM) algorithm, 
which iteratively re-scales gene expression to identify subpopulations with subtle, yet consistent, 
differences (Tarashansky et al., 2018). SAM returned two distinct clusters for each individual, 
with one cluster demarcated by higher CDK6 expression, expression of cell cycle genes (Tirosh et 
al., 2016), and surface CD38 expression as measured through FACS. Cells in the second cluster 
expressed fewer distinct genes but displayed higher relative expression of genes associated with 
HSC dormancy from murine studies (Cabezas-Wallscheid et al., 2017, using genes with logFC>2 
and FDR<0.01 in dHSC vs aHSC and MPP). We thus labeled the clusters 'cell cycle-primed' and 
'non-primed', respectively. Among CD34+38-45RA- cells from both individuals, we confirmed that 
the cell cycle-primed cluster had significantly higher expression of DEGS1 and of genes associated 
with ER Stress/UPR and protein folding, but comparable expression for genes associated with 
ROS and autophagy, consistent with our results for LT-HSCs. Signature scores for gene expression 
programs were derived by comparing the relative expression of that gene set with a random set 
of genes in the transcriptome (Tirosh et al., 2016) as implemented in Scanpy. LT-HSC were 
represented in both the cell cycle-primed cluster and the non-primed cluster. To examine LT-HSC 
specifically, we identified CD34+38-45RA- cells that were within the top 40th percentile for both 
CD49f and CD90 surface marker expression. 
 
STATISTICAL ANALYSES 
GraphPad Prism was used for all statistical analyses except RNA-seq. Unless otherwise indicated, 
mean +/- SD values are reported in the graphs. Statistical significance was determined with 
Student t-tests. p<0.05 (*), p<0.01 (**), p<0.001(***), and p<0.0001(****). 
 
DATA AND CODE AVAILABILITY 
 
Processed RNA-seq data is available on GEO under accession numbers GSE125214 (4HPR) and 
GSE125345 (uncultured LT-HSC, ST-HSC and GMP). Raw data is available on EGA under 
accession number EGAS00001003756. 
. 
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PE–anti-CD19 BD 349209 

PE–anti-GlyA Beckman Coulter A07792 
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PECy5–anti-CD45 Beckman Coulter A07785 
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Goat Anti-mouse secondary antibody Alexa 488 ThermoFisher A32723 

Bacterial and Virus Strains  
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Human humbilical cord blood samples Trillium and Credit 
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Mobilized Peripheral Blood Princess Margaret 
Cancer Centre 

 

Chemicals, Peptides, and Recombinant Proteins   

DNase I Roche 11284932001 

Ammonium Chloride Stem Cell 
Technologies 

07850 

AmpliTaq Gold 360 Polymerase ThermoFisher 4398813 
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BamH1-HF NEB R0136S 

Mlu1-HF Invitrogene 15432-016 

FLT3 Ligand Milteny Biotec 130-096-474 

IL6 Milteny Biotec 130-093-934 

SCF Milteny Biotec 130-096-696 

TPO Milteny Biotec 130-095-752 

EPO Janssen Eprex 10,000 IU/ml 

IL-3 Milteny Biotec 130-095-068 

GM-CSF Milteny Biotec 130-093-866 

Fenretinide/4HPR Tocris Biosciences 1396 

StemRegenin1 Stem Cell 
Technologies 

72344 

UM171 Xcessbio 60223-2 

DMSO Fisher Chemical D128-500 

ATRA Gift from Gordon 
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Bafilomycin A1 Sigma B1793 

ISRIB Selleckchem S7400 

DAPI Sigma 10236276001 

Critical Commercial Assays   

StemSep™ Human Hematopoietic Progenitor Cell 
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Stem Cell 
Technologies 
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CD34 MicroBead Kit, human  Milteny Biotec 130-097-047 

LS Columns Milteny Biotec 130-042-401 

Mouse Cell Depletion Kit Milteny Biotec 130-104-694 

SuperScript VILO ThermoFisher 1754050 

Roche Lightcycler 480 using Power SYBR Green ThermoFisher 4367659 

LysoTracker blue ThermoFisher L7525 

CYTO-ID® Autophagy detection kit Enzo Life Sciences ENZ-51031-0050 

RNeasy Micro Kit Qiagen 74004 

APC BrdU Flow Kit BD 552598 
 

CellROX deep red ThermoFisher C10422 

TMRE ThermoFisher T668 

RNeasy Plus Micro Kit Qiagen 74034 

Deposited Data   

Index-sorted single cell (sc) RNA-seq data of human 
HSPCs 

Velten et al., 2017 GSE75478 

RNA-seq data Dick lab, Princess 
Margaret Cancer 
Centre 

GSE125214 

RNA-seq data for uncultured LT-HSC, ST-HSC and 
GMP 

Dick lab, Princess 
Margaret Cancer 
Centre 

GSE125345 

Raw RNA-seq data Dick lab, Princess 
Margaret Cancer 
Centre 

EGAS00001003756 



 

Experimental Models: Organisms/Strains   

NOD.Cg PrkdcscidIl2rgtm1Wjl /SzJ The Jackson 
Laboratory 

005557 

Oligonucleotides 

shRNA amplification Forward primer: 
GGATCCTGTTTGAATGAGGCTTCAGTACTTTACAGA
ATCGTTGCCTGCACATCTTGGAAACACTTGCTGGGA
TTACTTCT  

Kaufmann et. al, 2019 N/A 

shRNA amplification Reverse primer: 
AGTAACGCGTAAAGTGATTTAATTTATACCATTTTAAT
TCAGCTTTGTAAAAATGTATCAAAGAGATAGCAAGGT
ATTCAGTTTTAGTAAACAAGATAATTGCTCCTAAAGT
AGCCCCTTGAAGTCCGAGGCAGTAGGCA 

Kaufmann et. al, 2019 N/A 

DEGS1 shRNA sequence:  
TGCTGTTGACAGTGAGCGAGGTCATGAAACTTACTC
ATAATAGTGAAGCCACAGATGTATTATGAGTAAGTTT
CATGACCCTGCCTACTGCCTCGGA 

This paper N/A 

control Renilla shRNA sequence: 
TGCTGTTGACAGTGAGCGCAGGAATTATAATGCTTA
TCTATAGTGAAGCCACAGATGTATAGATAAGCATTAT
AATTCCTATGCCTACTGCCTCGGA 

This paper N/A 

DEGS1 forward pPCR primer: 
CAAACATTCCAAACCAGCGAT 

This paper N/A 

DEGS1 reverse pPCR primer: 
GCAGTTGCATTAACCACTCAA 

This paper N/A 

GAPDH forward pPCR primer: 
ACATCGCTCAGACACCATG 

This paper N/A 

GAPDH reverse pPCR primer: 
TGTAGTTGAGGTCAATGAAGGG 

This paper N/A 

Recombinant DNA 

shRenilla Kaufmann et. al, 2019 pLBC2 lentiviral 
vector 

shDEGS1 This manuscript pLBC2 lentiviral 
vector 

Software and Algorithms 

FACSDiva  BD  

FlowJo v 9.96 Flowjo, LLC  

Prism 7 Graphpad Software  

Extreme Limiting Dilution Analysis (ELDA) Hu and Smyth, 2009 http://bioinf.wehi.edu
.au/software/elda/ 

GSEA  http://software.bro
adinstitute.org/gse
a/index.jsp 

Pathway database, Bader lab  (version April 2017) http://baderlab.org/G
eneSets 

 

Scran Lun et al., 2016 https://bioconductor.
org/packages/releas
e/bioc/html/scran.ht
ml 

Scanpy Wolf et al., 2018 https://github.com/th
eislab/scanpy 

http://baderlab.org/GeneSets
http://baderlab.org/GeneSets


 

Self Assembling Manifold Algorithm Tarashansky et al., 
2018 

https://github.com/at
arashansky/self-
assembling-manifold 

Other 

X-Vivo medium Lonza 04-380Q 

Fetal bovine serum Sigma F1051-500mL 

Iscove's modified Dulbecco's medium (IMDM) Gibco 12440-053 

MethoCultTM Optimum Stem Cell 
Technologies 

H4034 

StemProTM-34 SFM Gibco 10640-019 

StemPro nutrients Gibco 10641-025 

L-glutamine Multicell 609-065-EL 

Pen/Strep Gibco 15140-122 

Human LDL Stem Cell 
Technologies 

02698 
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Figure	S1,	related	to	Figure	1
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Figure	S1,	related	to	Figure	1.	DEGS1	contributes	to	the	distinct	wiring	of	sphingolipid	synthesis	
in	 the	 human	 hematopoietic	 hierarchy	 and	 is	 functionally	 required	 in	 vivo.	 (A)	 Schematic	
showing	where	the	SpL	genes	from	Figure	1A	lie	in	the	SpL	metabolic	pathway.	Genes	more	highly	
expressed	 in	 LT-HSC/ST-HSC	 are	 in	 red	 and	 genes	 more	 highly	 expressed	 in	 committed	
progenitors	are	in	blue.	DEGS1	is	a	biosynthetic	enzyme	in	de	novo	SpL	synthesis,	which	occurs	
in	 the	 ER,	 and	 its	 activity	 can	 be	 inhibited	 by	 4HPR.	 (B)	 Schematic	 showing	 the	 human	
hematopoietic	hierarchy	and	the	2	HSPC	populations	and	5	mature	populations	isolated	from	CB	
for	measurement	of	the	SpL	species	indicated	in	Figure	S1A	in	black	boxes	by	LC/MS.	(C)	Cer,	(D)	
dhCer,	(E)	S1P,	(F)	sphingosine	(Sph),	(G)	hexCer,	and	(H)	SM	as	percentage	of	all	SpLs	measured.	
(I)	KD	efficiency	of	 shDEGS1	was	quantified	 in	MOLM13	with	 shCtrl	or	 shDEGS	normalized	 to	
GAPDH	 expression.	 Two	 separate	 lentiviral	 KD	 experiments	 in	 CB	 CD34+CD38-	 cells	 were	
performed	and	presented	separately	(J-O).	(J)	The	transduction	input	is	the	%	of	BFP+	cells	at	3	
days	post-transduction	for	Experiment	1	(n=2	CB	pools)	and	Experiment	2	(n=3	CB	pools).	Each	
CB	pool	was	transplanted	into	5	individual	mice	and	(K)	human	CD45+	chimerism,	(L)	%	BFP+	in	
CD45+	cells,	and	(M)	log2	fold	change	of	BFP+	cells	(CD45+-output	vs	input),	(N)	%	CD19+	cells	in	
BFP+	fraction	and	(O)	%	CD33+	myeloid	cells	in	the	BFP+	fraction	at	4	weeks	post-transduction	in	
the	injected	femur	and	contra-lateral	bones	of	each	mouse	was	measured	by	flow	cytometry.		



Figure	S2,	related	to	Figure	2
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Figure	S2,	related	to	Figure	2.	Sphingolipid	modulation	of	DEGS1	alters	HSC	function	and	
lineage	balance	in	vitro.		(A)	Dose	response	of	varying	[4HPR]	in	lin-	CB	at	day	3	post-treatment	
showing	2uM	4HPR	gives	the	relative	half	maximal	number	of	viable	cells	compared	to	control	
(n=3).	(B)	Relative	levels	of	Cer/dhCer,	sphingosine	(sph)/dihydrosphingosine	(dhSph),	and	
S1P/dihydro-S1P	(dhS1P)	levels	in	lin-	CB	cells	cultured	for	8	days	with	control	or	4HPR	(n=2)	as	
measure	by	lipid	LC/MS.	The	relative	levels	of	lipid/dihydro-lipid	show	that	4HPR	causes	
accumulation	of	dhCer	and	decreases	total	Cer.	However,	relative	levels	of	the	signaling	lipid	
S1P	compared	to	dhS1P	is	unchanged	by	4HPR	treatment	compared	to	control.	(C)	%	BrdU+	
cells	following	4	or	8	hours	labeling	at	3d	post-treatment	with	the	indicated	sorted	cell	
populations	shows	4HPR	decreases	the	proliferation	rate	of	primitive	CB	subpopulations	in	
culture	(n=4,	paired	t-Test).	Cell	cycle	analysis	for	Ki67	and	DNA	content	by	flow	cytometry	of	
sorted	LT-,	ST-HSC,	or	GMP	at	(D)	day	2	(n=3)	or	day	3	post	treatment	(n=2)	with	vehicle	control	
or	4HPR	shows	4HPR	does	not	significantly	prevent	sorted	LT-HSC,	ST-HSC	or	GMP	grown	in	
4HPR	from	exiting	quiescence	and	transiting	through	the	cell	cycle.	(E)	Flow	cytometry	for	%	of	
cells	exhibiting	cleaved	Caspase	3	with	2uM	4HPR	treatment	(n=4)	at	day	3.	(F)	LT-HSC	or	GMP	
purified	from	4	week	xenografts	expressing	shCtrl	or	shDEGS1	by	flow	cytometry	were	analyzed	
for	cell	cycle	distribution	with	Ki67	and	DNA	content.	(G)	Relative	colonies	formed	by	LT-HSC,	
ST-HSC,	or	GMP	treated	with	2 µM ATRA	in	CFC	assays	following	10	days.	(H)	LC/MS	analysis	for	
Sph,	dihydrosphingosine	(dhSph),	Sph-1P	and	dhSph-1P.	Species	below	quantitation	level	(BQL)	
are	indicated.	



Figure	S3,	related	to	Figure	3
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Figure	S3,	related	to	Figure	3.	Ex	vivo	treatment	with	4HPR	maintains	HSC	function	following	
xenotransplantation.	(A-I)	Flow	cytometry	analysis	were	performed	on	human	CD34+	enriched	
cells	following	Miltenyi	human	CD34	enrichment	from	mice	engrafted	with	control	or	4HPR-
treated	cells	at	the	16	HSC	dose	for	the	human	CB	hierarchy	from	4	biological	experiments,	
marked	with	different	symbols	(n=4	mice	per	biological	experiment).	The	number	of	(A)	
CD34+CD19-	cells,	(B)	CD34+CD38-,	(C)	CD34+CD38+,	(D)	LT-HSC,	(E)	ST-HSC,	(F)	MLP,	and	(G)	
GMP	were	quantitated	from	each	mouse	at	16	weeks	post-transplant.	Representative	HSC	
hierarchy	analysis	scheme	of	CD34	enriched	cells	isolated	from	mice	16	weeks	post-
transplantation	engrafted	with	ex	vivo	cultured	CB	cells	in	the	presence	of	(H)	vehicle	control	
(black)	or	(I)	4HPR	(green).	(J)	Mice	from	Figure	1F-G	were	pooled	and	analyzed	for	the	number	
of	CD34+	shCtrl	or	shDEGS1	BFP+	transduced	cells	in	the	CD45+	fraction	(mice	were	pooled	for	
CB	xenografts,	technical	duplicates	for	2	CB	xenografts).	



Figure	S4,	related	to	Figure	4
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Figure	S4,	related	to	Figure	4.	Sphingolipid	modulation	with	4HPR	restricts	expansion	of	
committed	progenitors	during	ex	vivo	culture	to	enhance	HSC	self-renewal.		(A)	The	number	
of	cells	following	8	days	of	ex	vivo	culture	at	the	16	LTRC	dose	transplanted	per	mouse	at	the	
indicated	drug	treatments	(n=2).	(B)	LC/MS	analysis	for	total	Cer,	dhCer,	Sph,	dhSph,	Sph-1P	
and	dhSph-1P	levels	show	that	4HPR	increases	dhCer	and	dhSph	alone	or	in	combination	with	
UM171	and	SR1	(n=2).	(C)	The	Cer	and	(D)	dhCer	profiles	normalized	to	cellular	inorganic	
phosphate	levels	with	the	indicated	fatty-acyl	chain	of	cells	collected	following	8	days	of	culture	
with	indicated	treatments.	Species	below	quantitation	level	(BQL)	are	indicated.	(E)	The	
indicated	cell	populations	were	sorted	from	the	CD34+	fraction	of	lin-CB	cultured	for	8	days	and	
transplanted	into	NSG	mice	to	determine	human	lymphoid	and	myeloid	engraftment.	(F)	
Lymphoid	(CD45+CD19+)	and	(G)	myeloid	(CD45+CD33+)	engraftment	from	S5A	at	16	weeks	
post-transplantion,	Engraftment	considered	positive	at	0.01%.	(H)	Human	CD45	chimerism	in	
the	injected	femurs	and	non-injected	bones	of	transplanted	mice	for	the	indicated	cell	doses	at	
16	weeks	xenotransplantion	following	8	days	ex	vivo	culture	with	indicated	drugs.	(I-J)	LTRC	
frequency	plot	and	table	from	serial	transplantation	for	2	biological	experiments	with	control,	
4HPR,	U+S,	and	3-Factor	treatments	were	calculated	separated	and	shown.		
	 	



Figure	S5,	related	to	Figure	5	and	Table	S1,S2	and	S3
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Figure	S5,	 related	to	Figure	5	and	Tables	S1,	S2	and	S3.	Sphingolipid	modulation	with	4HPR	
treatment	 upregulates	 cellular	 stress	 pathways	 and	 remodels	 cellular	 metabolism	 in	 HSPC	
during	ex	vivo	culture.	(A)	Enrichment	map	at	day	2	of	4HPR	gene-sets	with	positive	and	negative	
normalized	 enrichment	 score	 (NES)	 at	 FDR<0.05	 relative	 to	 control	 treatment.	 Node	 size	 is	
proportional	 to	NES.	 Red	 node:	 positive	NES	 and	 enrichment	 in	 genes	 up-regulated	 by	 4HPR	
treatment.	 Blue	 node:	 negative	 NES	 and	 enrichment	 in	 genes	 down-regulated	 by	 4HPR	
treatment.	Green	edges	 indicate	gene	overlap.	 (B)	GSEA	of	autophagy,	ERstress/UPR,	protein	
folding	or	ROS	pathways	 in	uncultured	LT-HSC	vs	GMP.	 	 (C-E)	LT-HSC	from	Velten,	et	al.	were	
clustered	as	cell	cycle-primed	or	non-primed	as	described	in	methods:	(C)	cell	cycle	programs,	(D)	
CD38	surface	expression,	and	(E)	dormant	HSC	programs	are	shown.	significance	calculated	with	
Wilcoxon	rank	sum	test	 for	S5C-E,	p<0.05	 (*),	p<0.01	 (**),	p<0.001(***),	p<0.0001	(****).	 (F)	
Venn-Diagram	at	day	2	and	day	4	showing	number	of	overlap	between	top	500	up	regulated	
genes	in	4HPR,	U+S	and	3-Factor	treatments.		Multi	Dimension	Scaling	(MDS)	plot	(right)	showing	
similarities	between	samples	at	day	2	and	day	4.	Samples	with	closest	distances	are	circled	with	
dashed	lines.	(G)	NES	scores	at	day	4	for	indicated	gene	sets	from	Figure	5A	with	4HPR	treatment	
relative	 to	 control.	 (H)	Heatmap	of	 gene	expression	 at	 day	 4	 for	 the	 top	4	 genes	 in	 selected	
functional	modules	from	Figure	5B	upregulated	by	4HPR	treatment	at	day	2.	(I)	pEIF2S1	intensity	
for	individual	cells	from	1	CB	for	BFP+	isolated	from	4	week	xenografts	engrafted	with	shCtrl	or	
shDEGS1	stem	cells.	Representative	pEIF2S1	confocal	microscopy	images	for	(J)	shCTRL	LT-HSC	
and	 shCtrl	 ST-HSC	 and	 (K)	 shCtrl	 or	 shDEGS1	 LT-HSC.	 Flow	 cytometry	 analysis	 for	 (L)	 relative	
CellROX	 and	 (M)	 relative	 mitochondrial	 membrane	 potential	 with	 TMRE	 in	 the	 progeny	 of	
CD34+CD38-	stem	or	CD34+CD38+	progenitor	CB	cells	at	day	2	post-treatment	with	 indicated	
concentrations	of	4HPR.	
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Figure	 S6,	 related	 Figure	 6.	 4HPR	 activates	 autophagy	 in	 HSPC	 during	 ex	 vivo	 culture.	
Representative	 immunofluorescence	 images	 of	 DAPI	 (blue)	 and	 LC3II	 staining	 (green)	 for	
uncultured	(A)	CB	LT-HSC,	(B)	CB	GMP,	(C)	mPB	LT-HSC,	and	(D)	CD34+CD38+	cells	(prog)	following	
2	days	of	treatment	with	control	or	2	μM	4HPR	with	and	without	BAF	for	12	hours.	Scale	is	5	µm.	
(E)	Autophagic	flux	quantification	as	a	ratio	of	LC3II	foci	area	with	and	without	BAF	for	Figure	6D-
E	(n=3).	(F)	Cyto	ID	MFI	following	3	hours	of	cytokine	withdrawal	at	2	days	post	in	vitro	culture	
shows	only	stem,	but	not	progenitor	cells	activate	autophagic	flux	upon	cytokine	withdrawal.	(G)	
Representative	flow	cytometry	histogram	plot	of	Cyto-ID	fluorescence	intensity	of	control	(black)	
and	 4HPR	 (green)	 treated	 stem	 cells	 to	 assay	 for	 autophagic	 flux.	 Lower	mean	 fluorescence	
intensity	(MFI)	indicates	more	turnover	of	autophagosomes	and	thus	increased	autophagic	flux.	
(H)	CytoID	MFI	measurements	for	Figure	3G	and	the	comparable	data	for	progenitor	samples	to	
illustrate	autophagic	flux	is	not	significantly	induced	in	progenitor	cells	treated	with	4HPR	even	
upon	cytokine	withdrawal.	
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Figure	S7,	related	to	Figure	7.	Sphingolipid	modulation	by	4HPR	activates	a	coordinated	
proteostatic	pro-survival	response	by	autophagy	and	the	Integrate	Stress	Response	
pathways.	(A)	Experimental	scheme	for	Figure7A-D.	(B)	Experimental	scheme	for	Figure	S7C-F	
where	BAF	and	ISRIB	are	added	at	day	2	only.	Flow	cytometry	analysis	at	8	days	post	culture	for	
(C)	total	number	of	live	cells	(D)	number	of	CD34+	cells	(E)	number	of	CD14+	cells	and	(F)	
number	of	GlyA+	cells	represented	as	the	relative	%	to	ctrl	treatment.	(F)	Lysotracker	MFI	was	
quantified	by	flow	cytometry	in	DMSO	control	treated	cells	with	and	without	BAF	at	20	hours	
post-treatment.	



Table	S1,	related	to	Figure	5	and	S5.	Table	of	GSEA	pathway	analysis	for	RNAseq	data	from	ex	
vivo	treated	CB	cells.	
	
Table	S2,	related	to	Figure	5	and	S5.	Gene	lists	for	selected	4HPR-altered	pathways.	
	
Table	S3,	related	to	Figure	5	and	S5.	Table	of	top	10	differentially	expressed	genes	between	
Control	and	4HPR	treatment	at	day	2	for	indicated	pathways	of	Figure	5F.		
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