37 research outputs found

    Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase.

    Get PDF
    Tumor necrosis factor alpha (TNF alpha) has multiple biological functions including the prolonged activation of the collagenase and c-jun genes, which are regulated via their AP-1 binding sites. We show that incubating human fibroblasts with TNF alpha induces prolonged activation of JNK, the c-Jun kinase, which phosphorylates the transactivation domain of c-Jun. Furthermore, an immune complex kinase assay specifically demonstrates that TNF alpha stimulates the activity of JNK1, the recently described predominant form of JNK. TNF alpha also produces a small and transient increase in extracellular signal-regulated kinase (ERK) activity and no measured increase in Raf-1 kinase activity. On the other hand, epidermal growth factor causes a prolonged activation of Raf-1 kinase and ERK activity and a smaller, more transient activation of JNK, whereas the phorbol ester phorbol 12-myristate 13-acetate causes a small stimulation of Raf-1 kinase and a pronounced stimulation of ERK activity. The activation of JNK by TNF alpha does not correlate with Raf-1 or ERK activity. The kinetics of Raf-1, ERK, and JNK induction by epidermal growth factor, phorbol 12-myristate 13-acetate, or TNF alpha indicate distinct mechanisms of activation in human fibroblasts

    Transforming Activity of the Rho Family GTPase, Wrch-1, a Wnt-regulated Cdc42 Homolog, Is Dependent on a Novel Carboxyl-terminal Palmitoylation Motif

    Get PDF
    Wrch-1 is a Rho family GTPase that shares strong sequence and functional similarity with Cdc42. Like Cdc42, Wrch-1 can promote anchorage-independent growth transformation. We determined that activated Wrch-1 also promoted anchorage-dependent growth transformation of NIH 3T3 fibroblasts. Wrch-1 contains a distinct carboxyl-terminal extension not found in Cdc42, suggesting potential differences in subcellular location and function. Consistent with this, we found that Wrch-1 associated extensively with plasma membrane and endosomes, rather than with cytosol and perinuclear membranes like Cdc42. Like Cdc42, Wrch-1 terminates in a CAAX tetrapeptide (where C is cysteine, A is aliphatic amino acid, and X is any amino acid) motif (CCFV), suggesting that Wrch-1 may be prenylated similarly to Cdc42. Most surprisingly, unlike Cdc42, Wrch-1 did not incorporate isoprenoid moieties, and Wrch-1 membrane localization was not altered by inhibitors of protein prenylation. Instead, we showed that Wrch-1 is modified by the fatty acid palmitate, and pharmacologic inhibition of protein palmitoylation caused mislocalization of Wrch-1. Most interestingly, mutation of the second cysteine of the CCFV motif (CCFV > CSFV), but not the first, abrogated both Wrch-1 membrane localization and transformation. These results suggest that Wrch-1 membrane association, subcellular localization, and biological activity are mediated by a novel membrane-targeting mechanism distinct from that of Cdc42 and other isoprenylated Rho family GTPases

    Rho family GTPases regulate mammary epithelium cell growth and metastasis through distinguishable pathways.

    Get PDF
    BACKGROUND: Relatively few genes have been shown to directly affect the metastatic phenotype of breast cancer epithelial cells in vivo. The Rho family of proteins, incluing the Rho, Rac and Cdc42 subfamilies, are related to the small GTP binding protein Ras and regulated diverse biological processes including gene transcription, cytoskeletal organization, cell proliferation and transformation. The effects of Cdc42, Rac and Rho on the actin cytoskeleton suggested a possible role for Rho proteins in cellular motility and metastasis; however, a formal analysis of the role of Rho proteins in breast cancer cellular growth and metastasis in vivo had not previously been performed. MATERIALS AND METHODS: We generated a panel of MTLn3 rat mammary adenocarcinoma cells that expressed similar levels of dominant inhibitory mutants of Cdc42-, Rac- and Rho-dependent signaling, to examine the contribution of these GTPases to cell spreading, guided chemotaxis, and metastasis in vivo. The ability of Rho proteins to regulate intravasation into the peripheral blood was determined by implanting MTLn3 cell stable dominant negative lines in nude mice and measuring the formation of breast cancer cell colonies grown from the peripheral blood. Serial sectioning of the lungs was performed to determine the presence of metastasis in mice in which mammary tumors expressing the dominant negative Rho family proteins had grown to a similar size. RESULTS: Cell spreading of MTLn3 cells was selectively abrogated by N17Rac1. N19RhoA and N17Cdc42 reduced the number of focal contacts (FCs) and disrupted the co-localization of vinculin with phosphotyrosine at FCs. While N17Rac1 and N17Cdc42 preferentially inhibited colony formation in soft agar, all three GTPases affected cell growth in vivo. To distinguish effects on tumorigenicity from intravasation into the bloodstream, implanted tumors were grown to the same size in nude mice. Each dominant inhibitory Rho protein reduced intravasation into the peripheral blood. Lung metastasis of MTLn3 cells was also abrogated by the dominant inhibitory Rho proteins, despite the presence of residual CFU. CONCLUSIONS: These studies demonstrate for the first time a critical role for the Rho GTPases involving independent signaling pathways to limit mammary tumor cellular growth and metastasis in vivo

    The Pak4 Protein Kinase in Breast Cancer

    Get PDF

    Signaling pathways downstream to receptor tyrosine kinases: targets for cancer treatment

    No full text
    Mammalian cells have the ability to respond to a myriad of diverse extracellular stimuli that modulate cell function. This often involves ligands binding to cell surface receptors and subsequent activation of intracellular signaling pathways. These pathways can lead to changes in gene expression patterns that in turn regulate cell growth, differentiation, migration, and function. One important type of cell surface receptor is the receptor tyrosine kinase (RTK). In response to in response to ligand binding, RTKs dimerize, then trans-phosphorylate each other, leading to activation of downstream pathways. While the signaling proteins in these pathways are important for normal cell growth control, when improperly regulated they can lead to uncontrolled growth and sometimes cancer. For this reason, they are often considered to be good candidates for drug targets for chemotherapeutic drugs. RTKs can activate multiple different signaling pathways. Some of the signaling proteins in these pathways can have crosstalk with other RTK activated pathways, and some of them can be activated by multiple mechanisms in addition to activation by RTKs. While there is a wide array of different signaling proteins and pathways activated by RTKs, in this review we will discuss components of several key pathways including the MAPK pathway, the Her2/Neu pathway, mTOR, and Pak kinases. We provide an overview of the roles for these pathways in cell signaling and discuss how different components of these pathways are being considered as targets for cancer treatment

    Current Molecular Combination Therapies Used for the Treatment of Breast Cancer

    No full text
    Breast cancer is the second leading cause of death for women worldwide. While monotherapy (single agent) treatments have been used for many years, they are not always effective, and many patients relapse after initial treatment. Moreover, in some patients the response to therapy becomes weaker, or resistance to monotherapy develops over time. This is especially problematic for metastatic breast cancer or triple-negative breast cancer. Recently, combination therapies (in which two or more drugs are used to target two or more pathways) have emerged as promising new treatment options. Combination therapies are often more effective than monotherapies and demonstrate lower levels of toxicity during long-term treatment. In this review, we provide a comprehensive overview of current combination therapies, including molecular-targeted therapy, hormone therapy, immunotherapy, and chemotherapy. We also describe the molecular basis of breast cancer and the various treatment options for different breast cancer subtypes. While combination therapies are promising, we also discuss some of the challenges. Despite these challenges, the use of innovative combination therapy holds great promise compared with traditional monotherapies. In addition, the use of multidisciplinary technologies (such as nanotechnology and computer technology) has the potential to optimize combination therapies even further

    Death Receptor-Induced Activation of Initiator Caspase 8 Is Antagonized by Serine/Threonine Kinase PAK4

    Get PDF
    Normal cell growth requires a precisely controlled balance between cell death and survival. This involves activation of different types of intracellular signaling cascades within the cell. While some types of signaling proteins regulate apoptosis, or programmed cell death, other proteins within the cell can promote survival. The serine/threonine kinase PAK4 can protect cells from apoptosis in response to several different types of stimuli. As is the case for other members of the p21-activated kinase (PAK) family, one way that PAK4 may promote cell survival is by phosphorylating and thereby inhibiting the proapoptotic protein Bad. This leads in turn to the inhibition of effector caspases such as caspase 3. Here we show that in response to cytokines which activate death domain-containing receptors, such as the tumor necrosis factor and Fas receptors, PAK4 can inhibit the death signal by a different mechanism. Under these conditions, PAK4 inhibits apoptosis early in the caspase cascade, antagonizing the activation of initiator caspase 8. This inhibition, which does not require PAK4's kinase activity, may involve inhibition of caspase 8 recruitment to the death domain receptors. This role in regulating initiator caspases is an entirely novel role for the PAK proteins and suggests a new mechanism by which these proteins promote cell survival

    The Use of Nanomedicine to Target Signaling by the PAK Kinases for Disease Treatment

    No full text
    P21-activated kinases (PAKs) are serine/threonine kinases involved in the regulation of cell survival, proliferation, inhibition of apoptosis, and the regulation of cell morphology. Some members of the PAK family are highly expressed in several types of cancer, and they have also been implicated in several other medical disorders. They are thus considered to be good targets for treatment of cancer and other diseases. Although there are several inhibitors of the PAKs, the utility of some of these inhibitors is reduced for several reasons, including limited metabolic stability. One way to overcome this problem is the use of nanoparticles, which have the potential to increase drug delivery. The overall goals of this review are to describe the roles for PAK kinases in cell signaling and disease, and to describe how the use of nanomedicine is a promising new method for administering PAK inhibitors for the purpose of disease treatment and research. We discuss some of the basic mechanisms behind nanomedicine technology, and we then describe how these techniques are being used to package and deliver PAK inhibitors
    corecore