133 research outputs found

    Spin filter using a semiconductor quantum ring side-coupled to a quantum wire

    Full text link
    We introduce a new spin filter based on spin-resolved Fano resonances due to spin-split levels in a quantum ring (QR) side-coupled to a quantum wire (QW). Spin-orbit coupling inside the QR, together with external magnetic fields, induces spin splitting, and the Fano resonances due to the spin-split levels result in perfect or considerable suppression of the transport of either spin direction. Using the numerical renormalization group method, we find that the Coulomb interaction in the QR enhances the spin filter operation by widening the separation between dips in conductances for different spins and by allowing perfect blocking for one spin direction and perfect transmission for the other. The spin-filter effect persists as long as the temperature is less than the broadening of QR levels due to the QW-QR coupling. We discuss realistic conditions for the QR-based spin filter and its advantages to other similar devices.Comment: 5 pages, 4 figure

    Josephson effect through a multilevel dot near a singlet-triplet transition

    Full text link
    We investigate the Josephson effect through a two-level quantum dot with an exchange coupling between two dot electrons. We compute the superconducting phase relationship and construct the phase diagram in the superconducting gap--exchange coupling plane in the regime of the singlet-triplet transition driven by the exchange coupling. In our study two configurations for the dot-lead coupling are considered: one where effectively only one channel couples to the dot, and the other where the two dot orbitals have opposite parities. Perturbative analysis in the weak-coupling limit reveals that the system experiences transitions from 0 to π\pi (negative critical current) behavior, depending on the parity of the orbitals and the spin correlation between dot electrons. The strong coupling regime is tackled with the numerical renormalization group method, which first characterizes the Kondo correlations due to the dot-lead coupling and the exchange coupling in the absence of superconductivity. In the presence of superconductivity, many-body correlations such as two-stage Kondo effect compete with the superconductivity and the comparison between the gap and the relevant Kondo temperature scales allows to predict a rich variety of phase diagrams for the ground state of the system and for the Josephson current. Numerical calculations predicts that our system can exhibit Kondo-driven 0-π\pi-0 or π\pi-0-π\pi double transitions and, more interestingly, that if proper conditions are met a Kondo-assisted π\pi-junction can arise, which is contrary to a common belief that the Kondo effect opens a resonant level and makes the 0-junction. Our predictions could be probed experimentally for a buckminster fullerene sandwiched between two superconductors.Comment: 19 pages, 15 figure
    corecore