639 research outputs found

    Damping and frequency shift in the oscillations of two colliding Bose-Einstein condensates

    Full text link
    We have investigated the center-of-mass oscillations of a Rb87 Bose-Einstein condensate in an elongated magneto-static trap. We start from a trapped condensate and we transfer part of the atoms to another trapped level, by applying a radio-frequency pulse. The new condensate is produced far from its equilibrium position in the magnetic potential, and periodically collides with the parent condensate. We discuss how both the damping and the frequency shift of the oscillations are affected by the mutual interaction between the two condensates, in a wide range of trapping frequencies. The experimental data are compared with the prediction of a mean-field model.Comment: 5 RevTex pages, 7 eps figure

    Association of ultracold double-species bosonic molecules

    Full text link
    We report on the creation of heterospecies bosonic molecules, associated from an ultracold Bose-Bose mixture of 41K and 87Rb, by using a resonantly modulated magnetic field close to two Feshbach resonances. We measure the binding energy of the weakly bound molecular states versus the Feshbach field and compare our results to theoretical predictions. We observe the broadening and asymmetry of the association spectrum due to thermal distribution of the atoms, and a frequency shift occurring when the binding energy depends nonlinearly on the Feshbach field. A simple model is developed to quantitatively describe the association process. Our work marks an important step forward in the experimental route towards Bose-Einstein condensates of dipolar molecules.Comment: 5 pages, 4 figure

    Intense slow beams of bosonic potassium isotopes

    Full text link
    We report on an experimental realization of a two-dimensional magneto-optical trap (2D-MOT) that allows the generation of cold atomic beams of 39K and 41K bosonic potassium isotopes. The high measured fluxes up to 1.0x10^11 atoms/s and low atomic velocities around 33 m/s are well suited for a fast and reliable 3D-MOT loading, a basilar feature for new generation experiments on Bose-Einstein condensation of dilute atomic samples. We also present a simple multilevel theoretical model for the calculation of the light-induced force acting on an atom moving in a MOT. The model gives a good agreement between predicted and measured flux and velocity values for our 2D-MOT.Comment: Updated references, 1 figure added, 10 pages, 9 figure

    Portinari: A Data Exploration Tool to Personalize Cervical Cancer Screening

    Full text link
    Socio-technical systems play an important role in public health screening programs to prevent cancer. Cervical cancer incidence has significantly decreased in countries that developed systems for organized screening engaging medical practitioners, laboratories and patients. The system automatically identifies individuals at risk of developing the disease and invites them for a screening exam or a follow-up exam conducted by medical professionals. A triage algorithm in the system aims to reduce unnecessary screening exams for individuals at low-risk while detecting and treating individuals at high-risk. Despite the general success of screening, the triage algorithm is a one-size-fits all approach that is not personalized to a patient. This can easily be observed in historical data from screening exams. Often patients rely on personal factors to determine that they are either at high risk or not at risk at all and take action at their own discretion. Can exploring patient trajectories help hypothesize personal factors leading to their decisions? We present Portinari, a data exploration tool to query and visualize future trajectories of patients who have undergone a specific sequence of screening exams. The web-based tool contains (a) a visual query interface (b) a backend graph database of events in patients' lives (c) trajectory visualization using sankey diagrams. We use Portinari to explore diverse trajectories of patients following the Norwegian triage algorithm. The trajectories demonstrated variable degrees of adherence to the triage algorithm and allowed epidemiologists to hypothesize about the possible causes.Comment: Conference paper published at ICSE 2017 Buenos Aires, at the Software Engineering in Society Track. 10 pages, 5 figure

    Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture

    Full text link
    The route toward a Bose-Einstein condensate of dipolar molecules requires the ability to efficiently associate dimers of different chemical species and transfer them to the stable rovibrational ground state. Here, we report on recent spectroscopic measurements of two weakly bound molecular levels and newly observed narrow d-wave Feshbach resonances. The data are used to improve the collisional model for the Bose-Bose mixture 41K87Rb, among the most promising candidates to create a molecular dipolar BEC.Comment: 13 pages, 3 figure

    Observation of heteronuclear atomic Efimov resonances

    Full text link
    The Efimov effect represents a cornerstone in few-body physics. Building on the recent experimental observation with ultracold atoms, we report the first experimental signature of Efimov physics in a heteronuclear system. A mixture of 41^{41}K and 87^{87}Rb atoms was cooled to few hundred nanoKelvins and stored in an optical dipole trap. Exploiting a broad interspecies Feshbach resonance, the losses due to three-body collisions were studied as a function of the interspecies scattering length. We observe an enhancement of the three-body collisions for three distinct values of the interspecies scattering lengths, both positive and negative. We attribute the two features at negative scattering length to the existence of two kind of Efimov trimers, namely KKRb and KRbRb.Comment: 4 pages, 4 figure

    Quasi 2D Bose-Einstein condensation in an optical lattice

    Full text link
    We study the phase transition of a gas of Rb atoms to quantum degeneracy in the combined potential of a harmonically confining magnetic trap and the periodic potential of an optical lattice. For high optical lattice potentials we observe a significant change in the temperature dependency of the population of the ground state of the system. The experimental results are explained by the subsequent formation of quasi 2D condensates in the single lattice sites.Comment: 7 pages (including 3 figures
    corecore