858 research outputs found

    Effect of shin'iseihaito on lung colonization of pneumococcus in murine model

    Get PDF
    Background: Streptococcus pneumoniae (pneumococcus) causes various serious diseases including sinusitis, pneumonia, and meningitis. One serious problem observed recently with pneumococcal therapy is attenuation of the antibiotic effect because of the emergence of antibiotic-resistant pneumococcus. Shin’iseihaito, a traditional Japanese medicine based on ancient Chinese medicine, has been used for treatment of otolaryngeal diseases in Japan. The objective of this study was to examine the anti-infectious effects of shin’iseihaito and its related mechanism.Materials and Methods: We evaluated the beneficial effect of shin’iseihaito extract (SSHT) against pneumococcus-infected murine model. The colonization of bacteria, blood and bronchoalveolar lavage (BAL) killing activity, the levels of inflammatory cytokine and IgA were investigated.Results: The pneumococcus from blood was not found in both SSHT-treated mice and untreated mice. However, the pneumococcal colonization of lung was significantly (p<0.05) lower after SSHT administration compared with untreated mice. Blood bactericidal assay showed that no significant difference (p=0.07) was observed in the anti-bacterial effect between SSHT-treated mice and untreated mice. However, BAL bactericidal assay showed that the survival rate of pneumococcus using the BAL from SSHT-treated mice was significantly (p<0.05) lower than that using the BAL from untreated mice. We also found increased levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IgA in pneumococcus-infected mice treated with SSHT.Conclusions: SSHT decreased the colonization rate after pneumococcal infection and up-regulated BAL bactericidal activity through modulation of inflammatory cytokines and IgA. Our data also suggest SSHT may be useful for the treatment of pneumococcal infection.Keywords: shin'iseihito, Streptococcus pneumoniae, murine model, inflammatory cytokine, Ig

    Novel heterozygous dysfibrinogenemia, Sumida (A alpha C472S), showed markedly impaired lateral aggregation of protofibrils and mildly lower functional fibrinogen levels

    Get PDF
    Introduction: We encountered a 6-year-old girl with systemic lupus erythematosus. Although no bleeding or thrombotic tendency was detected, routine coagulation screening tests revealed slightly lower plasma fibrinogen levels, as determined by functional and antigenic measurements (functional/antigenic ratio=0.857), suggesting hypodysfibrinogenemia. Materials and methods: DNA sequence and functional analyses were performed on purified plasma fibrinogen, and recombinant variant fibrinogen was synthesized in Chinese hamster ovary cells based on the results obtained. Results: DNA sequencing revealed a heterozygous A alpha C472S substitution (mature protein residue number) in the alpha C-domain. A alpha C472S fibrinogen indicated the presence of additional disulfide-bonded molecules, and markedly impaired lateral aggregation of protofibrils in spite of slightly lower functional plasma fibrinogen levels. Scanning electron microscopic observations showed a thin fiber fibrin clot, and t-PA and plasminogen-mediated clot lysis was similar to that of a normal control. Recombinant variant fibrinogen-producing cells demonstrated that destruction of the A alpha 442C-472C disulfide bond did not prevent the synthesis or secretion of fibrinogen, whereas the variant A alpha chain of the secreted protein was degraded faster than that of the normal control. Conclusion: Our results suggest that A alpha C472S fibrinogen may cause dysfibrinogenemia, but not hypofibrinogenemia. The destruction and steric hindrance of the alpha C-domain of variant fibrinogen led to the impaired lateral aggregation of protofibrils and t-PA and plasminogen-mediated fibrinolysis, as well as several previously reported variants located in the alpha C-domain, and demonstrated the presence of disulfide-bonded molecules.ArticleTHROMBOSIS RESEARCH. 135(4):710-717 (2015)journal articl

    Genetic analyses of novel compound heterozygous hypodysfibrinogenemia, Tsukuba I: FGG c.1129+62_65 del AATA and FGG c.1299+4 del A

    Get PDF
    Epub 2016 Nov 5Introduction: Wefound a novel hypodysfibrinogenemia designated Tsukuba I caused by compound heterozygous nucleotide deletionswith FGG c. 1129+ 62_ 65 del AATA and FGG c. 1299+ 4 del A on different alleles. The former was deep in intron 8 of FGG (IVS-8 deletion) and the latter in exon 9 of FGG (Ex-9 deletion), which is translated for the gamma'-chain, but not the.A-chain. AWestern blot analysis of plasma fibrinogen from our patient revealed an aberrant gamma-chain that migrated slightly faster than the normal B beta-chain. Materials andmethods: To clarify the complex genetic mechanismunderlying Tsukuba I's hypodysfibrinogenemia induced by nucleotide deletions in two regions, we generated two minigenes incorporating each deletion region, transfected them into Chinese Hamster Ovary (CHO) cells, and analyzed RT-PCR products. We also established CHO cells producing the recombinant variant fibrinogen,gamma' 409.A (Ex-9 deletion). Results and conclusions: Minigene I incorporating the IVS-8 deletion showed two products: a normal splicing product and the unspliced product. Minigene II incorporating the Ex-9 deletion only produced the unspliced product. The established gamma' 409.A-CHOcells secreted variant fibrinogenmore effectively than normal fibrinogen. Therefore, the aberrant splicing products derived from the IVS-8 deletion cause hypofibrinogenemia most likely due to nonsense-mediated mRNA decay and the partial production of normal.A-and gamma'-chains; moreover, the Ex-9 deletion causes hypodysfibrinogenemia due to the absence of normal.A-and gamma'-chain production (hypofibrinogenemia) and augmented aberrant.'-chain production (dysfibrinogenemia). (C) 2016 Elsevier Ltd. All rights reserved.ArticleTHROMBOSIS RESEARCH. 148:111-117 (2016)journal articl

    Recombinant gamma T305A fibrinogen indicates severely impaired fibrin polymerization due to the aberrant function of hole 'a' and calcium binding sites

    Get PDF
    Introduction: We examined a 6-month-old girl with inherited fibrinogen abnormality and no history of bleeding or thrombosis. Routine coagulation screening tests showed a markedly low level of plasma fibrinogen determined by functional measurement and also a low level by antigenic measurement (functional/antigenic ratio = 0.295), suggesting hypodysfibrinogenemia. Materials and methods: DNA sequence analysis was performed, and gamma T305A fibrinogen was synthesized in Chinese hamster ovary cells based on the results. We then functionally analyzed and compared with that of nearby recombinant gamma N308K fibrinogen. Results: DNA sequence analysis revealed a heterozygous gamma T305A substitution (mature protein residue number). The gamma T305A fibrinogen indicated markedly impaired thrombin-catalyzed fibrin polymerization both in the presence or absence of 1 mM calcium ion compared with that of gamma N308K fibrinogen. Protection of plasmin degradation in the presence of calcium ion or Gly-Pro-Arg-Pro peptide (analogue for so-called knob 'A') and factor XIIIa-catalyzed fibrinogen crosslinking demonstrated that the calcium binding sites, hole 'a' and D:D interaction sites were all markedly impaired, whereas gamma N308K was impaired at the latter two sites. Molecular modeling demonstrated that gamma T305 is localized at a shorter distance than gamma N308 from the high affinity calcium binding site and hole 'a'. Conclusion: Our findings suggest that gamma T305 might be important for construction of the overall structure of the. module of fibrinogen. Substitution of gamma T305A leads to both dysfibrinogenemic and hypofibrinogenemic characterization, namely hypodysfibrinogenemia. We have already reported that recombinant gamma T305A fibrinogen was synthesized normally and secreted slightly, but was significantly reduced.ArticleTHROMBOSIS RESEARCH. 134(2):518-525 (2014)journal articl

    EFFECT OF SHIN'ISEIHAITO ON LUNG COLONIZATION OF PNEUMOCOCCUS IN MURINE MODEL

    Get PDF
    Background: Streptococcus pneumoniae (pneumococcus) causes various serious diseases including sinusitis, pneumonia, and meningitis. One serious problem observed recently with pneumococcal therapy is attenuation of the antibiotic effect because of the emergence of antibiotic-resistant pneumococcus. Shin’iseihaito, a traditional Japanese medicine based on ancient Chinese medicine, has been used for treatment of otolaryngeal diseases in Japan. The objective of this study was to examine the anti-infectious effects of shin’iseihaito and its related mechanism. Materials and Methods: We evaluated the beneficial effect of shin’iseihaito extract (SSHT) against pneumococcus-infected murine model. The colonization of bacteria, blood and bronchoalveolar lavage (BAL) killing activity, the levels of inflammatory cytokine and IgA were investigated. Results: The pneumococcus from blood was not found in both SSHT-treated mice and untreated mice. However, the pneumococcal colonization of lung was significantly (

    Effect of Shin’iseihaito (Xinyiqingfeitang) on Acute Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae (S. pneumoniae) causes sinusitis. The general treatment of S. pneumonia sinusitis is by using antibiotics; however, one of their serious problems is the attenuation of their effect. Shin’iseihaito (Xinyiqingfeitang), a formula of Japanese traditional Kampo medicine, has been used for the treatment of sinusitis in Japan. In this study, we investigated the efficacy of Shin’iseihaito against S. pneumoniae-caused sinusitis in mice. Oral administration of Shin’iseihaito extract (SSHT) decreased the nasal colonization of S. pneumoniae in both prophylactic and therapeutic treatments, respectively, and the former was more effective than the latter. Histopathological analysis revealed that the epithelial tissue from S. pneumoniae-infected nose under SSHT treatment recovered the tissue destruction in comparison to infected nose. We also confirmed this result by scanning electron microscopic analysis. Murine peritoneal macrophages from SSHT-treated mice had significant phagocytic activity in comparison to those from untreated group. We also found that tumor necrosis factor-α, interleukin-1β, interleukin-6, and monocyte chemotactic protein-1 levels and the migration of macrophages from S. pneumoniae-infected mice with the treatment with SSHT were increased compared to those from untreated group. Our data suggest that Shin’iseihaito may be useful for the treatment of S. pneumoniae-induced sinusitis

    Participatory art activities increase aalivary oxytocin secretion of ASD children

    Get PDF
    Autism spectrum disorder (ASD) occurs in 1 in 160 children worldwide. Individuals with ASD tend to be unique in the way that they comprehend themselves and others, as well as in the way that they interact and socialize, which can lead to challenges with social adaptation. There is currently no medication to improve the social deficit of children with ASD, and consequently, behavioral and complementary/alternative intervention plays an important role. In the present pilot study, we focused on the neuroendocrinological response to participatory art activities, which are known to have a positive effect on emotion, self-expression, sociability, and physical wellbeing. We collected saliva from 12 children with ASD and eight typically developed (TD) children before and after a visual art-based participatory art workshop to measure the levels of oxytocin, a neuropeptide involved in a wide range of social behaviors. We demonstrated that the rate of increase in salivary oxytocin following art activities in ASD children was significantly higher than that in TD children. In contrast, the change rate of salivary cortisol after participatory art activities was similar between the two groups. These results suggest that the beneficial effects of participatory art activities may be partially mediated by oxytocin release, and may have therapeutic potential for disorders involving social dysfunction

    The renin–angiotensin system promotes arrhythmogenic substrates and lethal arrhythmias in mice with non-ischaemic cardiomyopathy

    Get PDF
    [Aims]The progression of pathological left ventricular remodelling leads to cardiac dysfunction and contributes to the occurrence of malignant arrhythmias and sudden cardiac death. The underlying molecular mechanisms remain unclear, however. Our aim was to examine the role of the renin–angiotensin system (RAS) in the mechanism underlying arrhythmogenic cardiac remodelling using a transgenic mouse expressing a cardiac-specific dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). This mouse model exhibits progressive cardiac dysfunction leading to lethal arrhythmias. [Methods and results]Subcutaneous administration of aliskiren, a direct renin inhibitor, significantly suppressed the progression of pathological cardiac remodelling and improved survival among dnNRSF-Tg mice while reducing arrhythmogenicity. Genetic deletion of the angiotensin type 1a receptor (AT1aR) similarly suppressed cardiac remodelling and sudden death. In optical mapping analyses, spontaneous ventricular tachycardia (VT) and fibrillation (VF) initiated by breakthrough-type excitations originating from focal activation sites and maintained by functional re-entry were observed in dnNRSF-Tg hearts. Under constant pacing, dnNRSF-Tg hearts exhibited markedly slowed conduction velocity, which likely contributes to the arrhythmogenic substrate. Aliskiren treatment increased conduction velocity and reduced the incidence of sustained VT. These effects were associated with suppression of cardiac fibrosis and restoration of connexin 43 expression in dnNRSF-Tg ventricles. [Conclusion]Renin inhibition or genetic deletion of AT1aR suppresses pathological cardiac remodelling that leads to the generation of substrates maintaining VT/VF and reduces the occurrence of sudden death in dnNRSF-Tg mice. These findings demonstrate the significant contribution of RAS activation to the progression of arrhythmogenic substrates
    corecore