70 research outputs found

    MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes

    Get PDF
    GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3′UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes

    A reversible oxygen redox reaction in bulk-type all-solid-state batteries

    Get PDF
    An all-solid-state lithium battery using inorganic solid electrolytes requires safety assurance and improved energy density, both of which are issues in large-scale applications of lithium-ion batteries. Utilization of high-capacity lithium-excess electrode materials is effective for the further increase in energy density. However, they have never been applied to all-solid-state batteries. Operational difficulty of all-solid-state batteries using them generally lies in the construction of the electrode-electrolyte interface. By the amorphization of Li₂RuO₃ as a lithium-excess model material with Li₂SO₄, here, we have first demonstrated a reversible oxygen redox reaction in all-solid-state batteries. Amorphous nature of the Li₂RuO₃-Li₂SO₄ matrix enables inclusion of active material with high conductivity and ductility for achieving favorable interfaces with charge transfer capabilities, leading to the stable operation of all-solid-state batteries

    New Key Performance Indicators for a Smart Sustainable City

    No full text
    We propose key performance indicators (KPIs) based on the Gross Social Feel-Good Index to evaluate a smart sustainable city and report the results of a field trial in a city located almost at the center of the Tokyo Metropolitan Area. We developed KPIs based on the following concepts: (1). The triple bottom line is the basic evaluation criteria; (2). The same unit is used for every evaluation criterion; (3). The KPIs can be used to assess a diverse range of smart sustainable cities with different goals. With the proposed KPIs of smart sustainable cities, indicators are divided into four layers for simplicity: the triple bottom line and “satisfaction” lie in the first layer. Since the notion of “society” is broad, it is further split into “safety”, “health”, and “comfort”, which are positioned in the second layer. The third layer includes indicators such as “information security” and “ubiquitous society” from the perspective of information communication technology (ICT). We conducted a trial evaluation by applying the proposed KPIs to individual ICT solutions of “Internet Protocol announcements”, “Wi-Fi around the station” and “information transmission and control” which have already been installed in a smart sustainable city
    corecore