79 research outputs found

    Synthesis and properties of 4′-ThioDNA: unexpected RNA-like behavior of 4′-ThioDNA

    Get PDF
    The synthesis and properties of fully modified 4′-thioDNAs, oligonucleotides consisting of 2′-deoxy-4′-thionucleosides, were examined. In addition to the known literature properties (preferable hybridization with RNA and resistance to endonuclease hydrolysis), we also observed higher resistance of 4′-thioDNA to 3′-exonuclease cleavage. Furthermore, we found that fully modified 4′-thioDNAs behaved like RNA molecules in their hybridization properties and structural aspect, at least in the case of the 4′-thioDNA duplex. This observation was confirmed by experiments using groove binders, in which a 4′-thioDNA duplex interacts with an RNA major groove binder, lividomycin A, but not with DNA groove binders, to give an increase in its thermal stability. Since a 4′-thioDNA duplex competitively inhibited the hydrolysis of an RNA duplex by RNase V(1), it was not only the physical properties but also this biological data suggested that a 4′-thioDNA duplex has an RNA-like structure

    Glycosylation reactions mediated by hypervalent iodine : application to the synthesis of nucleosides and carbohydrates

    Get PDF
    To synthesize nucleoside and oligosaccharide derivatives, we often use a glycosylation reaction to form a glycoside bond. Coupling reactions between a nucleobase and a sugar donor in the former case, and the reaction between an acceptor and a sugar donor of in the latter are carried out in the presence of an appropriate activator. As an activator of the glycosylation, a combination of a Lewis acid catalyst and a hypervalent iodine was developed for synthesizing 4’-thionucleosides, which could be applied for the synthesis of 4’-selenonucleosides as well. The extension of hypervalent iodine-mediated glycosylation allowed us to couple a nucleobase with cyclic allylsilanes and glycal derivatives to yield carbocyclic nucleosides and 2’,3’-unsaturated nucleosides, respectively. In addition, the combination of hypervalent iodine and Lewis acid could be used for the glycosylation of glycals and thioglycosides to produce disaccharides. In this paper, we review the use of hypervalent iodine-mediated glycosylation reactions for the synthesis of nucleosides and oligosaccharide derivatives

    Intracellular stability of 2′-OMe-4′-thioribonucleoside modified siRNA leads to long-term RNAi effect

    Get PDF
    Chemically modified siRNAs are expected to have resistance toward nuclease degradation and good thermal stability in duplex formation for in vivo applications. We have recently found that 2′-OMe-4′-thioRNA, a hybrid chemical modification based on 2′-OMeRNA and 4′-thioRNA, has high hybridization affinity for complementary RNA and significant resistance toward degradation in human plasma. These results prompted us to develop chemically modified siRNAs using 2′-OMe-4′-thioribonucleosides for therapeutic application. Effective modification patterns were screened with a luciferase reporter assay. The best modification pattern of siRNA, which conferred duration of the gene-silencing effect without loss of RNAi activity, was identified. Quantification of the remaining siRNA in HeLa-luc cells using a Heat-in-Triton (HIT) qRT–PCR revealed that the intracellular stability of the siRNA modified with 2′-OMe-4′-thioribonucleosides contributed significantly to the duration of its RNAi activity

    New NTP analogs: the synthesis of 4′-thioUTP and 4′-thioCTP and their utility for SELEX

    Get PDF
    The synthesis of the triphosphates of 4′-thiouridine and 4′-thiocytidine, 4′-thioUTP (7; thioUTP) and 4′-thioCTP (8; thioCTP), and their utility for SELEX (systematic evolution of ligands by exponential enrichment) is described. The new nucleoside triphosphate (NTP) analogs 7 and 8 were prepared from appropriately protected 4′-thiouridine and -cytidine derivatives using the one-pot method reported by J. Ludwig and F. Eckstein [(1989) J. Org. Chem., 54, 631–635]. Because SELEX requires both in vitro transcription and reverse transcription, we examined the ability of 7 and 8 for SELEX by focusing on the two steps. Incorporation of 7 and 8 by T7 RNA polymerase to give 4′-thioRNA (thioRNA) proceeded well and was superior to those of the two sets of frequently used modified NTP analogs for SELEX (2′-NH(2)dUTP and 2′-NH(2)dCTP; 2′-FdUTP and 2′-FdCTP), when an adequate leader sequence of DNA template was selected. We revealed that a leader sequence of about +15 of DNA template is important for the effective incorporation of modified NTP analogs by T7 RNA polymerase. In addition, reverse transcription of the resulting thioRNA into the complementary DNA in the presence of 2′-deoxynucleoside triphosphates (dNTPs) also proceeded smoothly and precisely. The stability of the thioRNA toward RNase A was 50 times greater than that of the corresponding natural RNA. With these successful results in hand, we attempted the selection of thioRNA aptamers to human α-thrombin using thioUTP and thioCTP, and found a thioRNA aptamer with high binding affinity (K(d) = 4.7 nM)

    Gene suppression via U1 small nuclear RNA interference (U1i) machinery using oligonucleotides containing 2′-modified-4′-thionucleosides

    Get PDF
    AbstractGene suppression via U1 small nuclear RNA interference (U1i) is considered to be one of the most attractive approaches, and takes the place of general antisense, RNA interference (RNAi), and anti-micro RNA machineries. Since the U1i can be induced by short oligonucleotides (ONs), namely U1 adaptors consisting of a ‘target domain’ and a ‘U1 domain’, we prepared adaptor ONs using 2′-modified-4′-thionucleosides developed by our group, and evaluated their U1i activity. As a result, the desired gene suppression via U1i was observed in ONs prepared as a combination of 2′-fluoro-4′-thionucleoside and 2′-fluoronucleoside units as well as only 2′-fluoronucleoside units, while those prepared as combination of 2′-OMe nucleoside/2′-OMe-4′-thionucleoside and 2′-fluoronucleoside units did not show significant activity. Measurement of Tm values indicated that a higher hybridization ability of adaptor ONs with complementary RNA is one of the important factors to show potent U1i activity

    Unnatural imidazopyridopyrimidine:naphthyridine base pairs: selective incorporation and extension reaction by Deep Vent (exo− ) DNA polymerase

    Get PDF
    In our previous communication we reported the enzymatic recognition of unnatural imidazopyridopyrimidine:naphthyridine (Im:Na) base pairs, i.e. ImON:NaNO and ImNO:NaON, using the Klenow fragment exo− [KF (exo−)]. We describe herein the successful results of (i) improved enzymatic recognition for ImNO:NaON base pairs and (ii) further primer extension reactions after the Im:Na base pairs by Deep Vent DNA polymerase exo− [Deep Vent (exo−)]. Since KF (exo−) did not catalyze primer extension reactions after the Im:Na base pair, we carried out a screening of DNA polymerases to promote the primer extension reaction as well as to improve the selectivity of base pair recognition. As a result, a family B DNA polymerase, especially Deep Vent (exo−), seemed most promising for this purpose. In the ImON:NaNO base pair, incorporation of NaNOTP against ImON in the template was preferable to that of the natural dNTPs, while incorporation of dATP as well as dGTP competed with that of ImONTP when NaNO was placed in the template. Thus, the selectivity of base pair recognition by Deep Vent (exo−) was less than that by KF (exo−) in the case of the ImON:NaNO base pair. On the other hand, incorporation of NaONTP against ImNO in the template and that of ImNOTP against NaON were both quite selective. Thus, the selectivity of base pair recognition was improved by Deep Vent (exo−) in the ImNO:NaON base pair. Moreover, this enzyme catalyzed further primer extension reactions after the ImNO:NaON base pair to afford a faithful replicate, which was confirmed by MALDI-TOF mass spectrometry as well as the kinetics data for extension fidelity next to the ImNO:NaON base pair. The results presented in this paper revealed that the ImNO:NaON base pair might be a third base pair beyond the Watson–Crick base pairs

    The novel functional nucleic acid iRed effectively regulates target genes following cytoplasmic delivery by faint electric treatment

    Get PDF
    An intelligent shRNA expression device (iRed) contains the minimum essential components needed for shRNA production in cells, and could be a novel tool to regulate target genes. However, general delivery carriers consisting of cationic polymers/lipids could impede function of a newly generated shRNA via electrostatic interaction in the cytoplasm. Recently, we found that faint electric treatment (fET) of cells enhanced delivery of siRNA and functional nucleic acids into the cytoplasm in the absence of delivery carriers. Here, we examined fET of cells stably expressing luciferase in the presence of iRed encoding anti-luciferase shRNA. Transfection of lipofectamine 2000 (LFN)/iRed lipoplexes showed an RNAi effect, but fET-mediated iRed transfection did not, likely because of the endosomal localization of iRed after delivery. However, fET in the presence of lysosomotropic agent chloroquine significantly improved the RNAi effect of iRed/fET to levels that were higher than those for the LFN/iRed lipoplexes. Furthermore, the amount of lipid droplets in adipocytes significantly decreased following fET with iRed against resistin in the presence of chloroquine. Thus, iRed could be a useful tool to regulate target genes following fET-mediated cytoplasmic delivery with endosomal escape devices

    A Unique Gene-Silencing Approach, Using an Intelligent RNA Expression Device (iRed), Results in Minimal Immune Stimulation When Given by Local Intrapleural Injection in Malignant Pleural Mesothelioma

    Get PDF
    Background: We have recently introduced an intelligent RNA expression device (iRed), comprising the minimum essential components needed to transcribe short hairpin RNA (shRNA) in cells. Use of iRed efficiently produced shRNA molecules after transfection into cells and alleviated the innate immune stimulation following intravenous injection. Methods: To study the usefulness of iRed for local injection, the engineered iRed encoding luciferase shRNA (Luc iRed), complexed with cationic liposomes (Luc iRed/liposome-complexes), was intrapleurally injected into an orthotopic mesothelioma mouse model. Results: Luc iRed/liposome-complexes markedly suppressed the expression of a luciferase marker gene in pleurally disseminated mesothelioma cells. The suppressive efficiency was correlated with the expression level of shRNA within the mesothelioma cells. In addition, intrapleural injection of iRed/liposome-complexes did not induce IL-6 production in the pleural space and consequently in the blood compartment, although plasmid DNA (pDNA) or dsDNA (the natural construct for iRed) in the formulation did. Conclusion: Local delivery of iRed could augment the in vivo gene silencing effect without eliciting pronounced innate immune stimulation. Our results might hold promise for widespread utilization of iRed as an RNAi-based therapeutic for intracelial malignant cancers

    Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5′-splice site mutation of human cathepsin A gene

    Get PDF
    Cathepsin A (CTSA) is a multifunctional lysosomal enzyme, and its hereditary defect causes an autosomal recessive disorder called galactosialidosis. In a certain number of galactosialidosis patients, a base substitution from adenine to guanine is observed at the +3 position of the 7th intron (IVS7 +3a>g) of the CTSA gene. With this mutation, a splicing error occurs; and consequently mRNA lacking the 7th exon is produced. This skipping of exon 7 causes a frame shift of the transcripts, resulting in a non-functional CTSA protein and hence galactosialidosis. This mutation seems to make the interaction between the 5’-splice site of intron 7 of pre-mRNA and U1 small nuclear RNA (U1 snRNA) much weaker. In the present study, to produce properly spliced mRNA from the CTSA gene harboring this IVS7 +3a>g mutation, we examined the possible usefulness of modified U1 snRNA that could interact with the mutated 5’-splice site. Toward this goal, we first prepared a model system using a mutant CTSA mini gene plasmid for delivery into HeLa cells. Then, we examined the effectiveness of modified U1 snRNA on the formation of properly spliced mRNA from this mutant CTSA mini gene. As a result, we succeeded in obtaining improved formation of properly spliced CTSA mRNA. Our results suggest the usefulness of modified U1 snRNA for rescue from exon 7 skipping caused by the IVS7 +3a>g mutation of the CTSA gene

    Gene suppression via U1 small nuclear RNA interference (U1i) machinery using oligonucleotides containing 2'-modified-4'-thionucleosides

    Get PDF
    Gene suppression via U1 small nuclear RNA interference (U1i) is considered to be one of the most attractive approaches, and takes the place of general antisense, RNA interference (RNAi), and anti-micro RNA machineries. Since the U1i can be induced by short oligonucleotides (ONs), namely U1 adaptors consisting of a ‘target domain’ and a ‘U1 domain’, we prepared adaptor ONs using 2'-modified-4'-thionucleosides developed by our group, and evaluated their U1i activity. As a result, the desired gene suppression via U1i was observed in ONs prepared as a combination of 2'-fluoro-4'-thionucleoside and 2'-fluoronucleoside units as well as only 2'-fluoronucleoside units, while those prepared as combination of 2'-OMe nucleoside/2'-OMe-4'-thionucleoside and 2'-fluoronucleoside units did not show significant activity. Measurement of Tm values indicated that a higher hybridization ability of adaptor ONs with complementary RNA is one of the important factors to show potent U1i activity
    corecore