564 research outputs found

    Probing supernova physics with neutrino oscillations

    Get PDF
    We point out that solar neutrino oscillations with large mixing angle as evidenced in current solar neutrino data have a strong impact on strategies for diagnosing collapse-driven supernova (SN) through neutrino observations. Such oscillations induce a significant deformation of the energy spectra of neutrinos, thereby allowing us to obtain otherwise inaccessible features of SN neutrino spectra. We demonstrate that one can determine temperatures and luminosities of non-electron flavor neutrinos by observing bar{nu}_{e} from galactic SN in massive water Cherenkov detectors by the charged current reactions on protons.Comment: 6 pages. Typos corrected and references added. Version to be published in Physics Letters

    What can we learn about the lepton CP phase in the next 10 years?

    Get PDF
    We discuss how the lepton CP phase can be constrained by accelerator and reactor measurements in an era without dedicated experiments for CP violation search. To characterize globally the sensitivity to the CP phase \delta_{CP}, we introduce a new measure, the CP exclusion fraction, which quantifies what fraction of the \delta_{CP} space can be excluded at a given input values of \theta_{23} and \delta_{CP}. Using the measure we study the CP sensitivity which may be possessed by the accelerator experiments T2K and NOvA. We show that, if the mass hierarchy is known, T2K and NOvA alone may exclude, respectively, about 50%-60% and 40%-50% of the \delta_{CP} space at 90% CL by 10 years running, provided that a considerable fraction of beam time is devoted to the antineutrino run. The synergy between T2K and NOvA is remarkable, leading to the determination of the mass hierarchy through CP sensitivity at the same CL.Comment: Analyses and plots improved, conclusions unchanged, 23 pages, 8 figures, 1 tabl

    Parameter Degeneracies in Neutrino Oscillation Measurement of Leptonic CP and T Violation

    Get PDF
    The measurement of the mixing angle \theta_{13}, sign of \Delta m^2_{13} and the CP or T violating phase \delta is fraught with ambiguities in neutrino oscillation. In this paper we give an analytic treatment of the paramater degeneracies associated with measuring the \nu_\mu -> \nu_e probability and its CP and/or T conjugates. For CP violation, we give explicit solutions to allow us to obtain the regions where there exist two-fold and four-fold degeneracies. We calculate the fractional differences, \Delta \theta / \bar{\theta}, between the allowed solutions which may be used to compare with the expected sensitivities of the experiments. For T violation we show that there is always a complete degeneracy between solutions with positive and negative \Delta m^2_{13} which arises due to a symmetry and cannot be removed by observing one neutrino oscillation probability and its T conjugate. Thus, there is always a four fold parameter degeneracy apart from exceptional points. Explicit solutions are also given and the fractional differences are computed. The bi-probability CP/T trajectory diagrams are extensively used to illuminate the nature of the degeneracies.Comment: 35 pages, Latex, 11 postscript figures, minor correction

    Large-Theta(13) Perturbation Theory of Neutrino Oscillation for Long-Baseline Experiments

    Full text link
    The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter epsilon \equiv Delta m^2_{21} / Delta m^2_{31} \simeq 0.03 under the assumption s_{13} \simeq epsilon. If theta_{13} is large, as suggested by a candidate nu_{e} event at T2K as well as the recent global analyses, higher order corrections of s_{13} to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking theta_{13} as s_{13} \sim \sqrt{epsilon} \simeq 0.18, which guarantees its validity in a wide range of theta_{13} below the Chooz limit. We show on general ground that the correction terms must be of order epsilon^2. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of delta-dependence of the oscillation probability. Some interesting implications of the large theta_{13} hypothesis are discussed.Comment: Fig.2 added, 23 pages. Matches to the published versio

    Determining Neutrino Mass Hierarchy by Precision Measurements in Electron and Muon Neutrino Disappearance Experiments

    Get PDF
    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric \Delta m^2 measured in the electron neutrino disappearance channel, \Delta m^2(ee), with the one measured in the muon neutrino disappearance channel, \Delta m^2(\mu \mu), was proposed. If \Delta m^2(ee) is larger (smaller) than \Delta m^2(\mu \mu) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: \Delta m^2(\mu \mu) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and \Delta m^2(ee) that can be envisaged using the novel Mossbauer enhanced resonant \bar\nu_e absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of (\theta_13, \delta) in which the mass hierarchy can be determined. If \theta_13 is relatively large, sin^2 2\theta_13 \gsim 0.05, and both of \Delta m^2(ee) and \Delta m^2(\mu \mu) can be measured with the precision of \sim 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3 \pi \lsim \delta \lsim 1.7 \pi for the current best fit values of all the other oscillation parameters.Comment: 12 pages, 6 postscript figure
    corecore