909 research outputs found
Development of Atmospheric Monitoring System at Akeno Observatory for the Telescope Array Project
We have developed an atmospheric monitoring system for the Telescope Array
experiment at Akeno Observatory. It consists of a Nd:YAG laser with an
alt-azimuth shooting system and a small light receiver. This system is
installed inside an air conditioned weather-proof dome. All parts, including
the dome, laser, shooter, receiver, and optical devices are fully controlled by
a personal computer utilizing the Linux operating system.
It is now operated as a back-scattering LIDAR System. For the Telescope Array
experiment, to estimate energy reliably and to obtain the correct shower
development profile, the light transmittance in the atmosphere needs to be
calibrated with high accuracy.
Based on observational results using this monitoring system, we consider this
LIDAR to be a very powerful technique for Telescope Array experiments. The
details of this system and its atmospheric monitoring technique will be
discussed.Comment: 24 pages, 13 figures(plus 3 gif files), Published in NIM-A Vol.488,
August 200
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
The Anisotropy of Cosmic Ray Arrival Direction around 10^18eV
Anisotropy in the arrival directions of cosmic rays around 10^{18}eV is
studied using data from the Akeno 20 km^2 array and the Akeno Giant Air Shower
Array (AGASA), using a total of about 216,000 showers observed over 15 years
above 10^{17}eV. In the first harmonic analysis, we have found significant
anisotropy of 4 % around 10^{18}eV, corresponding to a chance
probability of after taking the number of independent trials
into account. With two dimensional analysis in right ascension and declination,
this anisotropy is interpreted as an excess of showers near the directions of
the Galactic Center and the Cygnus region. This is a clear evidence for the
existence of the galactic cosmic ray up to the energy of 10^{18}eV. Primary
particle which contribute this anisotropy may be proton or neutron.Comment: 4pages, three figures, to appear in Procedings of 26th ICRC(Salt Lake
City
The impact of increasing education levels on rising life expectancy: a decomposition analysis for Italy, Denmark, and the USA
Significant reductions in mortality are reflected in strong increases in life expectancy particularly in industrialized countries. Previous analyses relate these improvements primarily to medical innovations and advances in health-related behaviors. Mostly ignored, however, is the question to what extent the gains in life expectancy are related to structural changes in the populations due to increasing education levels. We decompose changes of the total populations’ life expectancy at age 30 in Italy, Denmark, and the USA, over the 20-year period between 1990 and 2010 into the effects of education-specific mortality changes (“M effect”) and changes in the populations’ educational structure (“P effect”). We use the “replacement decomposition technique” to further subdivide the M effect into the contributions by the individual education groups. While most of the increases in life expectancy are due to the effect of changing mortality, a large proportion of improvements in longevity can indeed be attributed to the changing structure of the population by level of education in all three countries. The estimated contribution of the P effect ranges from around 15% for men in the USA to approximately 40% for women in Denmark. This study demonstrates strong associations between education and overall population health, suggesting that education policies can also be seen as indirect health policies
An online database of infant functional near infraRed spectroscopy studies: a community-augmented systematic review
Until recently, imaging the infant brain was very challenging. Functional Near InfraRed Spectroscopy (fNIRS) is a promising, relatively novel technique, whose use is rapidly expanding. As an emergent field, it is particularly important to share methodological knowledge to ensure replicable and robust results. In this paper, we present a community-augmented database which will facilitate precisely this exchange. We tabulated articles and theses reporting empirical fNIRS research carried out on infants below three years of age along several methodological variables. The resulting spreadsheet has been uploaded in a format allowing individuals to continue adding new results, and download the most recent version of the table. Thus, this database is ideal to carry out systematic reviews. We illustrate its academic utility by focusing on the factors affecting three key variables: infant attrition, the reliability of oxygenated and deoxygenated responses, and signal-to-noise ratios. We then discuss strengths and weaknesses of the DBIfNIRS, and conclude by suggesting a set of simple guidelines aimed to facilitate methodological convergence through the standardization of reports
Transport properties of copper phthalocyanine based organic electronic devices
Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied
experimentally in field-effect transistors and metal-insulator-semiconductor
diodes at various temperatures. The electronic structure and the transport
properties of CuPc attached to leads are calculated using density functional
theory and scattering theory at the non-equilibrium Green's function level. We
discuss, in particular, the electronic structure of CuPc molecules attached to
gold chains in different geometries to mimic the different experimental setups.
The combined experimental and theoretical analysis explains the dependence of
the mobilityand the transmission coefficient on the charge carrier type
(electrons or holes) and on the contact geometry. We demonstrate the
correspondence between our experimental results on thick films and our
theoretical studies of single molecule contacts. Preliminary results for
fluorinated CuPc are discussed.Comment: 18 pages, 16 figures; to be published in Eur. Phys. J. Special Topic
Continuum Modeling of Ultrasonic Behavior in Fluid-Loaded Fibrous Composite Media with Applications to Ceramic and Metal Matrix Composites
Elastic wave propagation in fibrous composite materials has been the subject of numerous investigations in recent years. However, the morphology of fiber-reinforced composites can seriously complicate the calculation of their wave propagation properties. Since it is clearly not practical to attempt a solution of the completely general elastic-wave problem, most prior work [1–4] has employed various approximations to render the calculations tractable. Our own approach [5,6] to interacting continua offers an alternative procedure for modeling the response of composites, where in particular, a rational construction of the mixture momentum and constitutive-relation interaction terms is given. This theory leads to simple wave propagation equations which potentially contain the full influence of the microstructure, that is, the distribution of displacements and stresses within individual constituents of the composite
- …