71 research outputs found

    Using functional near-infrared spectroscopy to study the early developing brain: future directions and new challenges

    Get PDF
    Significance: Functional near-infrared spectroscopy (fNIRS) is a frequently used neuroimaging tool to explore the developing brain, particularly in infancy, with studies spanning from birth to toddlerhood (0 to 2 years). We provide an overview of the challenges and opportunities that the developmental fNIRS field faces, after almost 25 years of research.Aim: We discuss the most recent advances in fNIRS brain imaging with infants and outlines the trends and perspectives that will likely influence progress in the field in the near future.Approach: We discuss recent progress and future challenges in various areas and applications of developmental fNIRS from methodological and technological innovations to data processing and statistical approaches.Results and Conclusions: The major trends identified include uses of fNIRS "in the wild," such as global health contexts, home and community testing, and hyperscanning; advances in hardware, such as wearable technology; assessment of individual variation and developmental trajectories particularly while embedded in studies examining other environmental, health, and context specific factors and longitudinal designs; statistical advances including resting-state network and connectivity, machine learning and reproducibility, and collaborative studies. Standardization and larger studies have been, and will likely continue to be, a major goal in the field, and new data analysis techniques, statistical methods, and collaborative cross-site projects are emerging. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI

    Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds

    Get PDF
    Past studies have found that, in adults, the acoustic properties of sound signals (such as fast versus slow temporal features) differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapidly changing signals. Here, we tested whether newborns’ brains show some evidence of signal-specific lateralization responses using near-infrared spectroscopy (NIRS) and auditory stimuli that elicits lateralized responses in adults, composed of segments that vary in duration and spectral diversity. We found significantly greater bilateral responses of oxygenated hemoglobin (oxy-Hb) in the temporal areas for stimuli with a minimum segment duration of 21 ms, than stimuli with a minimum segment duration of 667 ms. However, we found no evidence for hemispheric asymmetries dependent on the stimulus characteristics. We hypothesize that acoustic-based functional brain asymmetries may develop throughout early infancy, and discuss their possible relationship with brain asymmetries for language

    Functional Lateralization of Speech Processing in Adults and Children Who Stutter

    Get PDF
    Developmental stuttering is a speech disorder in fluency characterized by repetitions, prolongations, and silent blocks, especially in the initial parts of utterances. Although their symptoms are motor related, people who stutter show abnormal patterns of cerebral hemispheric dominance in both anterior and posterior language areas. It is unknown whether the abnormal functional lateralization in the posterior language area starts during childhood or emerges as a consequence of many years of stuttering. In order to address this issue, we measured the lateralization of hemodynamic responses in the auditory cortex during auditory speech processing in adults and children who stutter, including preschoolers, with near-infrared spectroscopy. We used the analysis–resynthesis technique to prepare two types of stimuli: (i) a phonemic contrast embedded in Japanese spoken words (/itta/ vs. /itte/) and (ii) a prosodic contrast (/itta/ vs. /itta?/). In the baseline blocks, only /itta/ tokens were presented. In phonemic contrast blocks, /itta/ and /itte/ tokens were presented pseudo-randomly, and /itta/ and /itta?/ tokens in prosodic contrast blocks. In adults and children who do not stutter, there was a clear left-hemispheric advantage for the phonemic contrast compared to the prosodic contrast. Adults and children who stutter, however, showed no significant difference between the two stimulus conditions. A subject-by-subject analysis revealed that not a single subject who stutters showed a left advantage in the phonemic contrast over the prosodic contrast condition. These results indicate that the functional lateralization for auditory speech processing is in disarray among those who stutter, even at preschool age. These results shed light on the neural pathophysiology of developmental stuttering

    An online database of infant functional near infraRed spectroscopy studies: a community-augmented systematic review

    Get PDF
    Until recently, imaging the infant brain was very challenging. Functional Near InfraRed Spectroscopy (fNIRS) is a promising, relatively novel technique, whose use is rapidly expanding. As an emergent field, it is particularly important to share methodological knowledge to ensure replicable and robust results. In this paper, we present a community-augmented database which will facilitate precisely this exchange. We tabulated articles and theses reporting empirical fNIRS research carried out on infants below three years of age along several methodological variables. The resulting spreadsheet has been uploaded in a format allowing individuals to continue adding new results, and download the most recent version of the table. Thus, this database is ideal to carry out systematic reviews. We illustrate its academic utility by focusing on the factors affecting three key variables: infant attrition, the reliability of oxygenated and deoxygenated responses, and signal-to-noise ratios. We then discuss strengths and weaknesses of the DBIfNIRS, and conclude by suggesting a set of simple guidelines aimed to facilitate methodological convergence through the standardization of reports

    Recommendations for motion correction of infant fNIRS data applicable to data sets acquired with a variety of experimental designs and acquisition systems

    Get PDF
    Despite motion artifacts are a major source of noise in fNIRS infant data, how to approach motion correction in this population has only recently started to be investigated. Homer2 offers a wide range of motion correction methods and previous work on simulated and adult data suggested the use of Spline interpolation and Wavelet filtering as optimal methods for the recovery of trials affected by motion. However, motion artifacts in infant data differ from those in adults' both in amplitude and frequency of occurrence. Therefore, artifact correction recommendations derived from adult data might not be the optimal for infant data. We hypothesized that the combined use of Spline and Wavelet would outperform their individual use on data with complex profiles of motion artifacts. To demonstrate this, we first compared, on infant semi-simulated data, the performance of several motion correction techniques on their own and of the novel combined approach; then, we investigated the performance of Spline and Wavelet alone and in combination on real cognitive data from three datasets collected with infants of different ages (5, 7 and 10 months), with different tasks (auditory/visual and tactile) and with different NIRS systems. To quantitatively estimate and compare the efficacy of these techniques, we adopted four metrics: hemodynamic response recovery error, within-subject standard deviation, between-subjects standard deviation and number of trials that survived each correction method. Our results demonstrated that (i) it is always better correcting for motion artifacts than rejecting the corrupted trials; (ii) Wavelet filtering on its own and in combination with Spline interpolation seems to be the most effective approach in reducing the between- and the within-subject standard deviations. Importantly, the combination of Spline and Wavelet was the approach providing the best performance in semi-simulation both at low and high levels of noise, also recovering most of the trials affected by motion artifacts across all datasets, a crucial result when working with infant data. [Abstract copyright: Copyright © 2019. Published by Elsevier Inc.

    Reading Speed, Comprehension and Eye Movements While Reading Japanese Novels: Evidence from Untrained Readers and Cases of Speed-Reading Trainees

    Get PDF
    BACKGROUND: A growing body of evidence suggests that meditative training enhances perception and cognition. In Japan, the Park-Sasaki method of speed-reading involves organized visual training while forming both a relaxed and concentrated state of mind, as in meditation. The present study examined relationships between reading speed, sentence comprehension, and eye movements while reading short Japanese novels. In addition to normal untrained readers, three middle-level trainees and one high-level expert on this method were included for the two case studies. METHODOLOGY/PRINCIPAL FINDINGS: In Study 1, three of 17 participants were middle-level trainees on the speed-reading method. Immediately after reading each story once on a computer monitor, participants answered true or false questions regarding the content of the novel. Eye movements while reading were recorded using an eye-tracking system. Results revealed higher reading speed and lower comprehension scores in the trainees than in the untrained participants. Furthermore, eye-tracking data by untrained participants revealed multiple correlations between reading speed, accuracy and eye-movement measures, with faster readers showing shorter fixation durations and larger saccades in X than slower readers. In Study 2, participants included a high-level expert and 14 untrained students. The expert showed higher reading speed and statistically comparable, although numerically lower, comprehension scores compared with the untrained participants. During test sessions this expert moved her eyes along a nearly straight horizontal line as a first pass, without moving her eyes over the whole sentence display as did the untrained students. CONCLUSIONS/SIGNIFICANCE: In addition to revealing correlations between speed, comprehension and eye movements in reading Japanese contemporary novels by untrained readers, we describe cases of speed-reading trainees regarding relationships between these variables. The trainees overall tended to show poor performance influenced by the speed-accuracy trade-off, although this trade-off may be reduced in the case of at least one high-level expert

    Performance of young children on ''traveling salesperson'' navigation tasks presented on a touch screen.

    No full text
    The traveling salesperson problem (TSP) refers to a task in which one finds the shortest path when traveling through multiple spatially distributed points. Little is known about the developmental course of the strategies used to solve TSPs. The present study examined young children's performance and route selection strategies in one-way TSPs using a city-block metric. A touch screen-based navigation task was applied.Children (39-70 months) and adults (21-35 years) made serial responses on a touch screen to move a picture of a dog (the target) to two or three identical pictures of a bone (the goals). For all the versions of the tasks, significant improvement in measures of performance was observed from younger to older participants. In TSPs in which a specific route selection strategy such as the nearest-neighbor strategy minimized the total traveling distance, older participants used that strategy more frequently than younger ones. By contrast, in TSPs in which multiple strategies equally led to the minimal traveling distance, children tended to use strategies different from those used by adults, such as traveling straight to the farthest goal first.The results primarily suggest development of efficient route selection strategies that can optimize total numbers of movements and/or solution time. Unlike adults, children sometimes prioritized other strategies such as traveling straight ahead until being forced to change directions. This may reflect the fact that children were either less attentive to the task or less efficient at perceiving the overall shape of the problem and/or the relative distance from the starting location to each goal

    Gaze Behavior of Children with ASD toward Pictures of Facial Expressions

    No full text
    Atypical gaze behavior in response to a face has been well documented in individuals with autism spectrum disorders (ASDs). Children with ASD appear to differ from typically developing (TD) children in gaze behavior for spoken and dynamic face stimuli but not for nonspeaking, static face stimuli. Furthermore, children with ASD and TD children show a difference in their gaze behavior for certain expressions. However, few studies have examined the relationship between autism severity and gaze behavior toward certain facial expressions. The present study replicated and extended previous studies by examining gaze behavior towards pictures of facial expressions. We presented ASD and TD children with pictures of surprised, happy, neutral, angry, and sad facial expressions. Autism severity was assessed using the Childhood Autism Rating Scale (CARS). The results showed that there was no group difference in gaze behavior when looking at pictures of facial expressions. Conversely, the children with ASD who had more severe autistic symptomatology had a tendency to gaze at angry facial expressions for a shorter duration in comparison to other facial expressions. These findings suggest that autism severity should be considered when examining atypical responses to certain facial expressions

    Responses to vocalizations and auditory controls in the human newborn brain.

    No full text
    In the adult brain, speech can recruit a brain network that is overlapping with, but not identical to, that involved in perceiving non-linguistic vocalizations. Using the same stimuli that had been presented to human 4-month-olds and adults, as well as adult macaques, we sought to shed light on the cortical networks engaged when human newborns process diverse vocalization types. Near infrared spectroscopy was used to register the response of 40 newborns' perisylvian regions when stimulated with speech, human and macaque emotional vocalizations, as well as auditory controls where the formant structure was destroyed but the long-term spectrum was retained. Left fronto-temporal and parietal regions were significantly activated in the comparison of stimulation versus rest, with unclear selectivity in cortical activation. These results for the newborn brain are qualitatively and quantitatively compared with previous work on newborns, older human infants, adult humans, and adult macaques reported in previous work
    • …
    corecore